2024
Valcikova, Barbora; Vadovicova, Natalia; Smolkova, Karolina; Zacpalova, Magdalena; Krejci, Pavel; Lee, Shannon; Rauch, Jens; Kolch, Walter; Kriegsheim, Alexander; Dorotikova, Anna; Andrysik, Zdenek; Vichova, Rachel; Vacek, Ondrej; Soucek, Karel; Uldrijan, Stjepan
eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations. Journal Article
In: Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 44, pp. e2321305121, 2024, ISSN: 1091-6490 0027-8424, (Place: United States).
Abstract | Links | BibTeX | Tags: *Eukaryotic Initiation Factor-4F/metabolism/genetics, *GTP Phosphohydrolases/metabolism/genetics, *MAP Kinase Signaling System/genetics, *Melanoma/genetics/metabolism/pathology, *Membrane Proteins/metabolism/genetics, *Mutation, *Proto-Oncogene Proteins B-raf/genetics/metabolism, Animals, Cell Line, Dual Specificity Phosphatase 6/metabolism/genetics, DUSP6, eIF4F, ERK, Extracellular Signal-Regulated MAP Kinases/metabolism, Humans, MAP kinase, Melanoma, Mice, Tumor
@article{valcikova_eif4f_2024,
title = {eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations.},
author = {Barbora Valcikova and Natalia Vadovicova and Karolina Smolkova and Magdalena Zacpalova and Pavel Krejci and Shannon Lee and Jens Rauch and Walter Kolch and Alexander Kriegsheim and Anna Dorotikova and Zdenek Andrysik and Rachel Vichova and Ondrej Vacek and Karel Soucek and Stjepan Uldrijan},
doi = {10.1073/pnas.2321305121},
issn = {1091-6490 0027-8424},
year = {2024},
date = {2024-10-01},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {121},
number = {44},
pages = {e2321305121},
abstract = {The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.},
note = {Place: United States},
keywords = {*Eukaryotic Initiation Factor-4F/metabolism/genetics, *GTP Phosphohydrolases/metabolism/genetics, *MAP Kinase Signaling System/genetics, *Melanoma/genetics/metabolism/pathology, *Membrane Proteins/metabolism/genetics, *Mutation, *Proto-Oncogene Proteins B-raf/genetics/metabolism, Animals, Cell Line, Dual Specificity Phosphatase 6/metabolism/genetics, DUSP6, eIF4F, ERK, Extracellular Signal-Regulated MAP Kinases/metabolism, Humans, MAP kinase, Melanoma, Mice, Tumor},
pubstate = {published},
tppubtype = {article}
}
Němec, Václav; Remeš, Marek; Beňovský, Petr; Böck, Michael C.; Šranková, Eliška; Wong, Jong Fu; Cros, Julien; Williams, Eleanor; Tse, Lap Hang; Smil, David; Ensan, Deeba; Isaac, Methvin B.; Al-Awar, Rima; Gomolková, Regina; Ursachi, Vlad-Constantin; Fafílek, Bohumil; Kahounová, Zuzana; Víchová, Ráchel; Vacek, Ondřej; Berger, Benedict-Tilman; Wells, Carrow I.; Corona, Cesear R.; Vasta, James D.; Robers, Matthew B.; Krejci, Pavel; Souček, Karel; Bullock, Alex N.; Knapp, Stefan; Paruch, Kamil
Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2. Journal Article
In: Journal of medicinal chemistry, vol. 67, no. 15, pp. 12632–12659, 2024, ISSN: 1520-4804 0022-2623, (Place: United States).
Abstract | Links | BibTeX | Tags: *Activin Receptors, Activin Receptors, Animals, Bone Morphogenetic Proteins/metabolism, Drug Discovery, Humans, Mice, Molecular Probes/chemistry, Protein Kinase Inhibitors/pharmacology/chemistry, Pyrazoles/chemistry/pharmacology/chemical synthesis, Signal Transduction/drug effects, Structure-Activity Relationship, Type I/antagonists & inhibitors/metabolism, Type II/metabolism/antagonists & inhibitors
@article{nemec_discovery_2024,
title = {Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2.},
author = {Václav Němec and Marek Remeš and Petr Beňovský and Michael C. Böck and Eliška Šranková and Jong Fu Wong and Julien Cros and Eleanor Williams and Lap Hang Tse and David Smil and Deeba Ensan and Methvin B. Isaac and Rima Al-Awar and Regina Gomolková and Vlad-Constantin Ursachi and Bohumil Fafílek and Zuzana Kahounová and Ráchel Víchová and Ondřej Vacek and Benedict-Tilman Berger and Carrow I. Wells and Cesear R. Corona and James D. Vasta and Matthew B. Robers and Pavel Krejci and Karel Souček and Alex N. Bullock and Stefan Knapp and Kamil Paruch},
doi = {10.1021/acs.jmedchem.4c00629},
issn = {1520-4804 0022-2623},
year = {2024},
date = {2024-08-01},
journal = {Journal of medicinal chemistry},
volume = {67},
number = {15},
pages = {12632–12659},
abstract = {Activin receptor-like kinases 1-7 (ALK1-7) regulate a complex network of SMAD-independent as well as SMAD-dependent signaling pathways. One of the widely used inhibitors for functional investigations of these processes, in particular for bone morphogenetic protein (BMP) signaling, is LDN-193189. However, LDN-193189 has insufficient kinome-wide selectivity complicating its use in cellular target validation assays. Herein, we report the identification and comprehensive characterization of two chemically distinct highly selective inhibitors of ALK1 and ALK2, M4K2234 and MU1700, along with their negative controls. We show that both MU1700 and M4K2234 efficiently block the BMP pathway via selective in cellulo inhibition of ALK1/2 kinases and exhibit favorable in vivo profiles in mice. MU1700 is highly brain penetrant and shows remarkably high accumulation in the brain. These high-quality orthogonal chemical probes offer the selectivity required to become widely used tools for in vitro and in vivo investigation of BMP signaling.},
note = {Place: United States},
keywords = {*Activin Receptors, Activin Receptors, Animals, Bone Morphogenetic Proteins/metabolism, Drug Discovery, Humans, Mice, Molecular Probes/chemistry, Protein Kinase Inhibitors/pharmacology/chemistry, Pyrazoles/chemistry/pharmacology/chemical synthesis, Signal Transduction/drug effects, Structure-Activity Relationship, Type I/antagonists & inhibitors/metabolism, Type II/metabolism/antagonists & inhibitors},
pubstate = {published},
tppubtype = {article}
}
Pícková, Markéta; Kahounová, Zuzana; Radaszkiewicz, Tomasz; Procházková, Jiřina; Fedr, Radek; Nosková, Michaela; Radaszkiewicz, Katarzyna Anna; Ovesná, Petra; Bryja, Vítězslav; Souček, Karel
Orthotopic model for the analysis of melanoma circulating tumor cells. Journal Article
In: Scientific reports, vol. 14, no. 1, pp. 7827, 2024, ISSN: 2045-2322, (Place: England).
Abstract | Links | BibTeX | Tags: *Melanoma/pathology, *Neoplastic Cells, *Skin Neoplasms/pathology, Animals, Circulating tumor cells, Circulating/pathology, Flow Cytometry, Humans, In vivo model, Lymphatic Metastasis, Melanoma, Metastasis, Tumorectomy
@article{pickova_orthotopic_2024,
title = {Orthotopic model for the analysis of melanoma circulating tumor cells.},
author = {Markéta Pícková and Zuzana Kahounová and Tomasz Radaszkiewicz and Jiřina Procházková and Radek Fedr and Michaela Nosková and Katarzyna Anna Radaszkiewicz and Petra Ovesná and Vítězslav Bryja and Karel Souček},
doi = {10.1038/s41598-024-58236-y},
issn = {2045-2322},
year = {2024},
date = {2024-04-01},
journal = {Scientific reports},
volume = {14},
number = {1},
pages = {7827},
abstract = {Metastatic melanoma, a highly lethal form of skin cancer, presents significant clinical challenges due to limited therapeutic options and high metastatic capacity. Recent studies have demonstrated that cancer dissemination can occur earlier, before the diagnosis of the primary tumor. The progress in understanding the kinetics of cancer dissemination is limited by the lack of animal models that accurately mimic disease progression. We have established a xenograft model of human melanoma that spontaneously metastasizes to lymph nodes and lungs. This model allows precise monitoring of melanoma progression and is suitable for the quantitative and qualitative analysis of circulating tumor cells (CTCs). We have validated a flow cytometry-based protocol for CTCs enumeration and isolation. We could demonstrate that (i) CTCs were detectable in the bloodstream from the fourth week after tumor initiation, coinciding with the lymph node metastases appearance, (ii) excision of the primary tumor accelerated the formation of metastases in lymph nodes and lungs as early as one-week post-surgery, accompanied by the increased numbers of CTCs, and (iii) CTCs change their surface protein signature. In summary, we present a model of human melanoma that can be effectively utilized for future drug efficacy studies.},
note = {Place: England},
keywords = {*Melanoma/pathology, *Neoplastic Cells, *Skin Neoplasms/pathology, Animals, Circulating tumor cells, Circulating/pathology, Flow Cytometry, Humans, In vivo model, Lymphatic Metastasis, Melanoma, Metastasis, Tumorectomy},
pubstate = {published},
tppubtype = {article}
}
2023
Vázquez-Gómez, Gerardo; Petráš, Jiří; Dvořák, Zdeněk; Vondráček, Jan
In: Biochemical pharmacology, vol. 216, pp. 115797, 2023, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Receptors, Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/metabolism, Carcinogenesis/genetics/metabolism, Colon cancer, Colon/metabolism, Dietary contaminants, Epithelial barrier, Inflammation, Inflammation/metabolism, Intestine, Mice, Microbial agonists, Pregnane X receptor, Pregnane X Receptor/metabolism, Steroid/metabolism
@article{vazquez-gomez_aryl_2023,
title = {Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis.},
author = {Gerardo Vázquez-Gómez and Jiří Petráš and Zdeněk Dvořák and Jan Vondráček},
doi = {10.1016/j.bcp.2023.115797},
issn = {1873-2968 0006-2952},
year = {2023},
date = {2023-10-01},
journal = {Biochemical pharmacology},
volume = {216},
pages = {115797},
abstract = {Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.},
note = {Place: England},
keywords = {*Receptors, Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/metabolism, Carcinogenesis/genetics/metabolism, Colon cancer, Colon/metabolism, Dietary contaminants, Epithelial barrier, Inflammation, Inflammation/metabolism, Intestine, Mice, Microbial agonists, Pregnane X receptor, Pregnane X Receptor/metabolism, Steroid/metabolism},
pubstate = {published},
tppubtype = {article}
}
Marvanová, Soňa; Pěnčíková, Kateřina; Pálková, Lenka; Ciganek, Miroslav; Petráš, Jiří; Lněničková, Anna; Vondráček, Jan; Machala, Miroslav
Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence. Journal Article
In: The Science of the total environment, vol. 879, pp. 162924, 2023, ISSN: 1879-1026 0048-9697, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Environmental Pollutants, *Heterocyclic Compounds, AhR activity, Airborne particulate matter, Animals, Aryl Hydrocarbon, Freshwater sediments, Gap junctional intercellular communication, Humans, Particulate Matter, Polycyclic aromatic sulfur heterocyclic compounds, Rats, Receptors, Thiophenes/toxicity/metabolism
@article{marvanova_benzobnaphthodthiophenes_2023,
title = {Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence.},
author = {Soňa Marvanová and Kateřina Pěnčíková and Lenka Pálková and Miroslav Ciganek and Jiří Petráš and Anna Lněničková and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.scitotenv.2023.162924},
issn = {1879-1026 0048-9697},
year = {2023},
date = {2023-06-01},
journal = {The Science of the total environment},
volume = {879},
pages = {162924},
abstract = {Polycyclic aromatic sulfur heterocyclic compounds (PASHs) belong among ubiquitous environmental pollutants; however, their toxic effects remain poorly understood. Here, we studied the aryl hydrocarbon receptor (AhR)-mediated activity of dibenzothiophene, benzo[b]naphtho[d]thiophenes, and naphthylbenzo[b]thiophenes, as well as their presence in two types of environmental matrices: river sediments collected from both rural and urban areas, and in airborne particulate matter (PM(2.5)) sampled in cities with different levels and sources of pollution. Benzo[b]naphtho[2,1-d]thiophene, benzo[b]naphtho[2,3-d]thiophene, 2,2-naphthylbenzo[b]thiophene, and 2,1-naphthylbenzo[b]thiophene were newly identified as efficient AhR agonists in both rat and human AhR-based reporter gene assays, with 2,2-naphthylbenzo[b]thiophene being the most potent compound identified in both species. Benzo[b]naphtho[1,2-d]thiophene and 3,2-naphthylbenzo[b]thiophene elicited AhR-mediated activity only in the rat liver cell model, while dibenzothiophene and 3,1-naphthylbenzo[b]thiophene were inactive in either cell type. Independently of their ability to activate the AhR, benzo[b]naphtho[1,2-d]thiophene, 2,1-naphthylbenzo[b]thiophene, 3,1-naphthylbenzo[b]thiophene, and 3,2-naphthylbenzo[b]thiophene inhibited gap junctional intercellular communication in a model of rat liver epithelial cells. Benzo[b]naphtho[d]thiophenes were dominant PASHs present in both PM(2.5) and sediment samples, with benzo[b]naphtho[2,1-d]thiophene being the most abundant one, followed by benzo[b]naphtho[2,3-d]thiophene. The levels of naphthylbenzo[b]thiophenes were mostly low or below detection limit. Benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[2,3-d]thiophene were identified as the most significant contributors to the AhR-mediated activity in the environmental samples evaluated in this study. Both induced nuclear translocation of the AhR, and they induced CYP1A1 expression in a time-dependent manner, suggesting that their AhR-mediated activity may depend on the rate of their intracellular metabolism. In conclusion, some PASHs could be significant contributors to the overall AhR-mediated toxicity of complex environmental samples suggesting that more attention should be paid to the potential health impacts of this group of environmental pollutants.},
note = {Place: Netherlands},
keywords = {*Environmental Pollutants, *Heterocyclic Compounds, AhR activity, Airborne particulate matter, Animals, Aryl Hydrocarbon, Freshwater sediments, Gap junctional intercellular communication, Humans, Particulate Matter, Polycyclic aromatic sulfur heterocyclic compounds, Rats, Receptors, Thiophenes/toxicity/metabolism},
pubstate = {published},
tppubtype = {article}
}
2022
Muresan, Ximena M.; Slabáková, Eva; Procházková, Jiřina; Drápela, Stanislav; Fedr, Radek; Pícková, Markéta; Vacek, Ondřej; Víchová, Ráchel; Suchánková, Tereza; Bouchal, Jan; Kürfürstová, Daniela; Král, Milan; Hulínová, Tereza; Sýkora, Radek P.; Študent, Vladimír; Hejret, Václav; Weerden, Wytske M.; Puhr, Martin; Pustka, Václav; Potěšil, David; Zdráhal, Zbyněk; Culig, Zoran; Souček, Karel
Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, whereas Its Activation Triggers Apoptosis. Journal Article
In: The American journal of pathology, vol. 192, no. 9, pp. 1321–1335, 2022, ISSN: 1525-2191 0002-9440, (Place: United States).
Abstract | Links | BibTeX | Tags: *Prostatic Neoplasms/pathology, *Toll-Like Receptor 3/genetics/metabolism, Animals, Apoptosis, Cell Line, Humans, Male, Poly I-C/pharmacology, Prostate/pathology, Tumor
@article{muresan_toll-like_2022,
title = {Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, whereas Its Activation Triggers Apoptosis.},
author = {Ximena M. Muresan and Eva Slabáková and Jiřina Procházková and Stanislav Drápela and Radek Fedr and Markéta Pícková and Ondřej Vacek and Ráchel Víchová and Tereza Suchánková and Jan Bouchal and Daniela Kürfürstová and Milan Král and Tereza Hulínová and Radek P. Sýkora and Vladimír Študent and Václav Hejret and Wytske M. Weerden and Martin Puhr and Václav Pustka and David Potěšil and Zbyněk Zdráhal and Zoran Culig and Karel Souček},
doi = {10.1016/j.ajpath.2022.05.009},
issn = {1525-2191 0002-9440},
year = {2022},
date = {2022-09-01},
journal = {The American journal of pathology},
volume = {192},
number = {9},
pages = {1321–1335},
abstract = {Toll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and have described its role primarily in the proinflammatory response and induction of apoptosis. It is up-regulated in some castration-resistant prostate cancers. However, the role of TLR3 in prostate cancer progression remains largely unknown. The current study experimentally demonstrated that exogenous TLR3 activation in PCa cell lines leads to a significant induction of secretion of the cytokines IL-6, IL-8, and interferon-β, depending on the model and chemoresistance status. Transcriptomic analysis of TLR3-overexpressing cells revealed a functional program that is enriched for genes involved in the regulation of cell motility, migration, and tumor invasiveness. Increased motility, migration, and invasion in TLR3-overexpressing cell line were confirmed by several in vitro assays and using an orthotopic prostate xenograft model in vivo. Furthermore, TLR3-ligand induced apoptosis via cleavage of caspase-3/7 and poly (ADP-ribose) polymerase, predominantly in TLR3-overexpressing cells. These results indicate that TLR3 may be involved in prostate cancer progression and metastasis; however, it might also represent an Achilles heel of PCa, which can be exploited for targeted therapy.},
note = {Place: United States},
keywords = {*Prostatic Neoplasms/pathology, *Toll-Like Receptor 3/genetics/metabolism, Animals, Apoptosis, Cell Line, Humans, Male, Poly I-C/pharmacology, Prostate/pathology, Tumor},
pubstate = {published},
tppubtype = {article}
}
Lenárt, Sára; Lenárt, Peter; Knopfová, Lucia; Kotasová, Hana; Pelková, Vendula; Sedláková, Veronika; Vacek, Ondřej; Pokludová, Jana; Čan, Vladimír; Šmarda, Jan; Souček, Karel; Hampl, Aleš; Beneš, Petr
TACSTD2 upregulation is an early reaction to lung infection. Journal Article
In: Scientific reports, vol. 12, no. 1, pp. 9583, 2022, ISSN: 2045-2322, (Place: England).
Abstract | Links | BibTeX | Tags: *Antigens, *Cell Adhesion Molecules/metabolism, Animals, Epithelial Cells/metabolism, Lung/metabolism, Neoplasm/metabolism, Up-Regulation
@article{lenart_tacstd2_2022,
title = {TACSTD2 upregulation is an early reaction to lung infection.},
author = {Sára Lenárt and Peter Lenárt and Lucia Knopfová and Hana Kotasová and Vendula Pelková and Veronika Sedláková and Ondřej Vacek and Jana Pokludová and Vladimír Čan and Jan Šmarda and Karel Souček and Aleš Hampl and Petr Beneš},
doi = {10.1038/s41598-022-13637-9},
issn = {2045-2322},
year = {2022},
date = {2022-06-01},
journal = {Scientific reports},
volume = {12},
number = {1},
pages = {9583},
abstract = {TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody-drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.},
note = {Place: England},
keywords = {*Antigens, *Cell Adhesion Molecules/metabolism, Animals, Epithelial Cells/metabolism, Lung/metabolism, Neoplasm/metabolism, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
Říhová, Kamila; Dúcka, Monika; Zambo, Iva Staniczková; Vymětalová, Ladislava; Šrámek, Martin; Trčka, Filip; Verner, Jan; Drápela, Stanislav; Fedr, Radek; Suchánková, Tereza; Pavlatovská, Barbora; Ondroušková, Eva; Kubelková, Irena; Zapletalová, Danica; Tuček, Štěpán; Múdry, Peter; Krákorová, Dagmar Adámková; Knopfová, Lucia; Šmarda, Jan; Souček, Karel; Borsig, Lubor; Beneš, Petr
Transcription factor c-Myb: novel prognostic factor in osteosarcoma. Journal Article
In: Clinical & experimental metastasis, vol. 39, no. 2, pp. 375–390, 2022, ISSN: 1573-7276 0262-0898, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Bone Neoplasms/pathology, *Osteosarcoma/pathology, Animals, c-Myb, Cell Line, Cell Movement/genetics, Cell Proliferation, Chemoresistance, Gene Expression Regulation, Humans, Metastasis, Mice, Neoplastic, Osteosarcoma, Prognosis, proliferation, Retrospective Studies, Tumor, Wnt Signaling Pathway
@article{rihova_transcription_2022,
title = {Transcription factor c-Myb: novel prognostic factor in osteosarcoma.},
author = {Kamila Říhová and Monika Dúcka and Iva Staniczková Zambo and Ladislava Vymětalová and Martin Šrámek and Filip Trčka and Jan Verner and Stanislav Drápela and Radek Fedr and Tereza Suchánková and Barbora Pavlatovská and Eva Ondroušková and Irena Kubelková and Danica Zapletalová and Štěpán Tuček and Peter Múdry and Dagmar Adámková Krákorová and Lucia Knopfová and Jan Šmarda and Karel Souček and Lubor Borsig and Petr Beneš},
doi = {10.1007/s10585-021-10145-4},
issn = {1573-7276 0262-0898},
year = {2022},
date = {2022-04-01},
journal = {Clinical & experimental metastasis},
volume = {39},
number = {2},
pages = {375–390},
abstract = {The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.},
note = {Place: Netherlands},
keywords = {*Bone Neoplasms/pathology, *Osteosarcoma/pathology, Animals, c-Myb, Cell Line, Cell Movement/genetics, Cell Proliferation, Chemoresistance, Gene Expression Regulation, Humans, Metastasis, Mice, Neoplastic, Osteosarcoma, Prognosis, proliferation, Retrospective Studies, Tumor, Wnt Signaling Pathway},
pubstate = {published},
tppubtype = {article}
}
2021
Radaszkiewicz, Tomasz; Nosková, Michaela; Gömöryová, Kristína; Blanářová, Olga Vondálová; Radaszkiewicz, Katarzyna Anna; Picková, Markéta; Víchová, Ráchel; Gybeľ, Tomáš; Kaiser, Karol; Demková, Lucia; Kučerová, Lucia; Bárta, Tomáš; Potěšil, David; Zdráhal, Zbyněk; Souček, Karel; Bryja, Vítězslav
RNF43 inhibits WNT5A-driven signaling and suppresses melanoma invasion and resistance to the targeted therapy. Journal Article
In: eLife, vol. 10, 2021, ISSN: 2050-084X, (Place: England).
Abstract | Links | BibTeX | Tags: *Melanoma/genetics/pathology/prevention & control, *Signal Transduction, Animals, BRAF V600E, cancer biology, cell biology, human, Inbred NOD, Male, Melanoma, Mice, mouse, Neoplasm Invasiveness/genetics, RNF43, ROR1, Ubiquitin-Protein Ligases/*genetics/metabolism, VANGL1, Wnt-5a Protein/*genetics/metabolism, WNT5A
@article{radaszkiewicz_rnf43_2021,
title = {RNF43 inhibits WNT5A-driven signaling and suppresses melanoma invasion and resistance to the targeted therapy.},
author = {Tomasz Radaszkiewicz and Michaela Nosková and Kristína Gömöryová and Olga Vondálová Blanářová and Katarzyna Anna Radaszkiewicz and Markéta Picková and Ráchel Víchová and Tomáš Gybeľ and Karol Kaiser and Lucia Demková and Lucia Kučerová and Tomáš Bárta and David Potěšil and Zbyněk Zdráhal and Karel Souček and Vítězslav Bryja},
doi = {10.7554/eLife.65759},
issn = {2050-084X},
year = {2021},
date = {2021-10-01},
journal = {eLife},
volume = {10},
abstract = {RNF43 is an E3 ubiquitin ligase and known negative regulator of WNT/β-catenin signaling. We demonstrate that RNF43 is also a regulator of noncanonical WNT5A-induced signaling in human cells. Analysis of the RNF43 interactome using BioID and immunoprecipitation showed that RNF43 can interact with the core receptor complex components dedicated to the noncanonical Wnt pathway such as ROR1, ROR2, VANGL1, and VANGL2. RNF43 triggers VANGL2 ubiquitination and proteasomal degradation and clathrin-dependent internalization of ROR1 receptor and inhibits ROR2 activation. These activities of RNF43 are physiologically relevant and block pro-metastatic WNT5A signaling in melanoma. RNF43 inhibits responses to WNT5A, which results in the suppression of invasive properties of melanoma cells. Furthermore, RNF43 prevented WNT5A-assisted development of resistance to BRAF V600E and MEK inhibitors. Next, RNF43 acted as melanoma suppressor and improved response to targeted therapies in vivo. In line with these findings, RNF43 expression decreases during melanoma progression and RNF43-low patients have a worse prognosis. We conclude that RNF43 is a newly discovered negative regulator of WNT5A-mediated biological responses that desensitizes cells to WNT5A.},
note = {Place: England},
keywords = {*Melanoma/genetics/pathology/prevention & control, *Signal Transduction, Animals, BRAF V600E, cancer biology, cell biology, human, Inbred NOD, Male, Melanoma, Mice, mouse, Neoplasm Invasiveness/genetics, RNF43, ROR1, Ubiquitin-Protein Ligases/*genetics/metabolism, VANGL1, Wnt-5a Protein/*genetics/metabolism, WNT5A},
pubstate = {published},
tppubtype = {article}
}
Němec, Václav; Maier, Lukáš; Berger, Benedict-Tilman; Chaikuad, Apirat; Drápela, Stanislav; Souček, Karel; Knapp, Stefan; Paruch, Kamil
Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core. Journal Article
In: European journal of medicinal chemistry, vol. 215, pp. 113299, 2021, ISSN: 1768-3254 0223-5234, (Place: France).
Abstract | Links | BibTeX | Tags: 2-b]pyridine, Animals, Carrier Proteins/*antagonists & inhibitors/metabolism, CLK, Crystallography, Furans/chemical synthesis/metabolism/*pharmacology, Furo[3, HIPK, Humans, Inhibitor, Kinase, MCF-7 Cells, Mice, Molecular Structure, MU1210, MU135, MU1787, Protein Binding, Protein Kinase Inhibitors/chemical synthesis/metabolism/*pharmacology, Protein Serine-Threonine Kinases/*antagonists & inhibitors/metabolism, Pyridines/chemical synthesis/metabolism/*pharmacology, Structure-Activity Relationship, X-Ray
@article{nemec_highly_2021,
title = {Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core.},
author = {Václav Němec and Lukáš Maier and Benedict-Tilman Berger and Apirat Chaikuad and Stanislav Drápela and Karel Souček and Stefan Knapp and Kamil Paruch},
doi = {10.1016/j.ejmech.2021.113299},
issn = {1768-3254 0223-5234},
year = {2021},
date = {2021-04-01},
journal = {European journal of medicinal chemistry},
volume = {215},
pages = {113299},
abstract = {The furo [3,2-b]pyridine motif represents a relatively underexplored central pharmacophore in the area of kinase inhibitors. Herein, we report flexible synthesis of 3,5-disubstituted furo [3,2-b]pyridines that relies on chemoselective couplings of newly prepared 5-chloro-3-iodofuro [3,2-b]pyridine. This methodology allowed efficient second-generation synthesis of the state-of-the-art chemical biology probe for CLK1/2/4 MU1210, and identification of the highly selective inhibitors of HIPKs MU135 and MU1787 which are presented and characterized in this study, including the X-ray crystal structure of MU135 in HIPK2. chemical biology probe.},
note = {Place: France},
keywords = {2-b]pyridine, Animals, Carrier Proteins/*antagonists & inhibitors/metabolism, CLK, Crystallography, Furans/chemical synthesis/metabolism/*pharmacology, Furo[3, HIPK, Humans, Inhibitor, Kinase, MCF-7 Cells, Mice, Molecular Structure, MU1210, MU135, MU1787, Protein Binding, Protein Kinase Inhibitors/chemical synthesis/metabolism/*pharmacology, Protein Serine-Threonine Kinases/*antagonists & inhibitors/metabolism, Pyridines/chemical synthesis/metabolism/*pharmacology, Structure-Activity Relationship, X-Ray},
pubstate = {published},
tppubtype = {article}
}
Vondráček, Jan; Machala, Miroslav
The Role of Metabolism in Toxicity of Polycyclic Aromatic Hydrocarbons and their Non-genotoxic Modes of Action. Journal Article
In: Current drug metabolism, vol. 22, no. 8, pp. 584–595, 2021, ISSN: 1875-5453 1389-2002, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Activation, AhR, Animals, Benzo[a]pyrene, Cell Proliferation, Cell Survival, cell-to-cell communication, DNA Damage, Environmental Pollutants/*pharmacokinetics/*toxicity, Humans, Metabolic, Mutagens/*pharmacokinetics/*toxicity, oxidative stress, PAH metabolism., Polycyclic Aromatic Hydrocarbons/*pharmacokinetics/*toxicity
@article{vondracek_role_2021,
title = {The Role of Metabolism in Toxicity of Polycyclic Aromatic Hydrocarbons and their Non-genotoxic Modes of Action.},
author = {Jan Vondráček and Miroslav Machala},
doi = {10.2174/1389200221999201125205725},
issn = {1875-5453 1389-2002},
year = {2021},
date = {2021-01-01},
journal = {Current drug metabolism},
volume = {22},
number = {8},
pages = {584–595},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) represent a class of widely distributed environmental pollutants that have been primarily studied as genotoxic compounds. Their mutagenicity/genotoxicity largely depends on their oxidative metabolism leading to the production of dihydrodiol epoxide metabolites, as well as additional metabolites contributing to oxidative DNA damage, such as PAH quinones. However, both parental PAHs and their metabolites, including PAH quinones or hydroxylated PAHs, have been shown to produce various types of non-genotoxic effects. These include e.g., activation of the aryl hydrocarbon receptor and/or additional nuclear receptors, activation of membrane receptors, including tyrosine kinases and G-protein coupled receptors, or activation of intracellular signaling pathways, such as mitogen-activated protein kinases, Akt kinase and Ca(2+)-dependent signaling. These pathways may, together with the cellular DNA damage responses, modulate cell proliferation, cell survival or cell-to-cell communication, thus contributing to the known carcinogenic effects of PAHs. In the present review, we summarize some of the known non-genotoxic effects of PAHs, focusing primarily on those that have also been shown to be modulated by PAH metabolites. Despite the limitations of the available data, it seems evident that more attention should be paid to the discrimination between the potential non-genotoxic effects of parental PAHs and those of their metabolites. This may provide further insight into the mechanisms of toxicity of this large and diverse group of environmental pollutants.},
note = {Place: Netherlands},
keywords = {Activation, AhR, Animals, Benzo[a]pyrene, Cell Proliferation, Cell Survival, cell-to-cell communication, DNA Damage, Environmental Pollutants/*pharmacokinetics/*toxicity, Humans, Metabolic, Mutagens/*pharmacokinetics/*toxicity, oxidative stress, PAH metabolism., Polycyclic Aromatic Hydrocarbons/*pharmacokinetics/*toxicity},
pubstate = {published},
tppubtype = {article}
}
2020
Drápela, Stanislav; Khirsariya, Prashant; Weerden, Wytske M.; Fedr, Radek; Suchánková, Tereza; Búzová, Diana; Červený, Jan; Hampl, Aleš; Puhr, Martin; Watson, William R.; Culig, Zoran; Krejčí, Lumír; Paruch, Kamil; Souček, Karel
In: Molecular oncology, vol. 14, no. 10, pp. 2487–2503, 2020, ISSN: 1878-0261 1574-7891, (Place: United States).
Abstract | Links | BibTeX | Tags: *Mitosis/drug effects, Animals, castration-resistant prostate cancer, Cell Death/drug effects, Cell Line, Cell Proliferation/drug effects, Checkpoint Kinase 1, Checkpoint Kinase 1/*antagonists & inhibitors/metabolism, Deoxycytidine/*analogs & derivatives/pharmacology, Docetaxel resistance, Docetaxel/*pharmacology, Drug resistance, gemcitabine, Humans, Male, Mice, mitotic catastrophe, MU380, Neoplasm/*drug effects, Piperidines/chemistry/*pharmacology, Prostatic Neoplasms/*pathology, Pyrazoles/chemistry/*pharmacology, Pyrimidines/chemistry/*pharmacology, S Phase/drug effects, SCID, Tumor, Xenograft Model Antitumor Assays
@article{drapela_chk1_2020,
title = {The CHK1 inhibitor MU380 significantly increases the sensitivity of human docetaxel-resistant prostate cancer cells to gemcitabine through the induction of mitotic catastrophe.},
author = {Stanislav Drápela and Prashant Khirsariya and Wytske M. Weerden and Radek Fedr and Tereza Suchánková and Diana Búzová and Jan Červený and Aleš Hampl and Martin Puhr and William R. Watson and Zoran Culig and Lumír Krejčí and Kamil Paruch and Karel Souček},
doi = {10.1002/1878-0261.12756},
issn = {1878-0261 1574-7891},
year = {2020},
date = {2020-10-01},
journal = {Molecular oncology},
volume = {14},
number = {10},
pages = {2487–2503},
abstract = {As treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa. Synergistic induction of DNA damage with CHK1 inhibition represents a promising therapeutic approach that has been tested in many types of malignancies, but not in chemoresistant mCRPC. Here, we report that such therapeutic approach may be exploited using the synergistic action of the antimetabolite gemcitabine (GEM) and CHK1 inhibitors SCH900776 and MU380 in docetaxel-resistant (DR) mCRPC. Given the results, both CHK1 inhibitors significantly potentiated the sensitivity to GEM in a panel of chemo-naïve and matched DR PCa cell lines under 2D conditions. MU380 exhibited a stronger synergistic effect with GEM than clinical candidate SCH900776. MU380 alone or in combination with GEM significantly reduced spheroid size and increased apoptosis in all patient-derived xenograft 3D cultures, with a higher impact in DR models. Combined treatment induced premature mitosis from G1 phase resulting in the mitotic catastrophe as a prestage of apoptosis. Finally, treatment by MU380 alone, or in combination with GEM, significantly inhibited tumor growth of both PC339-DOC and PC346C-DOC xenograft models in mice. Taken together, our data suggest that metabolically robust and selective CHK1 inhibitor MU380 can bypass docetaxel resistance and improve the effectiveness of GEM in DR mCRPC models. This approach might allow for dose reduction of GEM and thereby minimize undesired toxicity and may represent a therapeutic option for patients with incurable DR mCRPC.},
note = {Place: United States},
keywords = {*Mitosis/drug effects, Animals, castration-resistant prostate cancer, Cell Death/drug effects, Cell Line, Cell Proliferation/drug effects, Checkpoint Kinase 1, Checkpoint Kinase 1/*antagonists & inhibitors/metabolism, Deoxycytidine/*analogs & derivatives/pharmacology, Docetaxel resistance, Docetaxel/*pharmacology, Drug resistance, gemcitabine, Humans, Male, Mice, mitotic catastrophe, MU380, Neoplasm/*drug effects, Piperidines/chemistry/*pharmacology, Prostatic Neoplasms/*pathology, Pyrazoles/chemistry/*pharmacology, Pyrimidines/chemistry/*pharmacology, S Phase/drug effects, SCID, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Remšík, Ján; Pícková, Markéta; Vacek, Ondřej; Fedr, Radek; Binó, Lucia; Hampl, Aleš; Souček, Karel
TGF-β regulates Sca-1 expression and plasticity of pre-neoplastic mammary epithelial stem cells. Journal Article
In: Scientific reports, vol. 10, no. 1, pp. 11396, 2020, ISSN: 2045-2322, (Place: England).
Abstract | Links | BibTeX | Tags: Animal/pathology, Animals, Ataxin-1/*metabolism, Breast Neoplasms/genetics/*pathology, Cell Line, Cell Plasticity/genetics, Epithelial Cells/pathology, Epithelial-Mesenchymal Transition/genetics, ErbB-2/genetics, Experimental/genetics/*pathology, Female, Gene Expression Regulation, Humans, Mammary Glands, Mammary Neoplasms, Mice, Neoplastic, Neoplastic Stem Cells/*pathology, Receptor, Recombinant Proteins/genetics/metabolism, Signal Transduction/genetics, Transforming Growth Factor beta/genetics/*metabolism, Tumor/transplantation
@article{remsik_tgf-_2020,
title = {TGF-β regulates Sca-1 expression and plasticity of pre-neoplastic mammary epithelial stem cells.},
author = {Ján Remšík and Markéta Pícková and Ondřej Vacek and Radek Fedr and Lucia Binó and Aleš Hampl and Karel Souček},
doi = {10.1038/s41598-020-67827-4},
issn = {2045-2322},
year = {2020},
date = {2020-07-01},
journal = {Scientific reports},
volume = {10},
number = {1},
pages = {11396},
abstract = {The epithelial-mesenchymal plasticity, in tight association with stemness, contributes to the mammary gland homeostasis, evolution of early neoplastic lesions and cancer dissemination. Focused on cell surfaceome, we used mouse models of pre-neoplastic mammary epithelial and cancer stem cells to reveal the connection between cell surface markers and distinct cell phenotypes. We mechanistically dissected the TGF-β family-driven regulation of Sca-1, one of the most commonly used adult stem cell markers. We further provided evidence that TGF-β disrupts the lineage commitment and promotes the accumulation of tumor-initiating cells in pre-neoplastic cells.},
note = {Place: England},
keywords = {Animal/pathology, Animals, Ataxin-1/*metabolism, Breast Neoplasms/genetics/*pathology, Cell Line, Cell Plasticity/genetics, Epithelial Cells/pathology, Epithelial-Mesenchymal Transition/genetics, ErbB-2/genetics, Experimental/genetics/*pathology, Female, Gene Expression Regulation, Humans, Mammary Glands, Mammary Neoplasms, Mice, Neoplastic, Neoplastic Stem Cells/*pathology, Receptor, Recombinant Proteins/genetics/metabolism, Signal Transduction/genetics, Transforming Growth Factor beta/genetics/*metabolism, Tumor/transplantation},
pubstate = {published},
tppubtype = {article}
}
Kahounová, Zuzana; Remšík, Ján; Fedr, Radek; Bouchal, Jan; Mičková, Alena; Slabáková, Eva; Binó, Lucia; Hampl, Aleš; Souček, Karel
Slug-expressing mouse prostate epithelial cells have increased stem cell potential. Journal Article
In: Stem cell research, vol. 46, pp. 101844, 2020, ISSN: 1876-7753 1873-5061, (Place: England).
Abstract | Links | BibTeX | Tags: *Epithelial-Mesenchymal Transition, *Prostate, Animals, Cell Line, Cell Movement, Epithelial Cells, epithelial-to-mesenchymal transition, Male, Mice, Organoids, Prostate stem cells, Snai2/Slug, Snail Family Transcription Factors/genetics, stemness, Tumor
@article{kahounova_slug-expressing_2020,
title = {Slug-expressing mouse prostate epithelial cells have increased stem cell potential.},
author = {Zuzana Kahounová and Ján Remšík and Radek Fedr and Jan Bouchal and Alena Mičková and Eva Slabáková and Lucia Binó and Aleš Hampl and Karel Souček},
doi = {10.1016/j.scr.2020.101844},
issn = {1876-7753 1873-5061},
year = {2020},
date = {2020-07-01},
journal = {Stem cell research},
volume = {46},
pages = {101844},
abstract = {Deciphering the properties of adult stem cells is crucial for understanding of their role in healthy tissue and in cancer progression as well. Both stem cells and cancer stem cells have shown association with epithelial-to-mesenchymal transition (EMT) in various tissue types. Aiming to investigate the epithelial and mesenchymal phenotypic traits in adult mouse prostate, we sorted subpopulations of basal prostate stem cells (mPSCs) and assessed the expression levels of EMT regulators and markers with custom-designed gene expression array. The population of mPSCs defined by a Lin(-)/Sca-1(+)CD49f(hi)/Trop-2(+) (LSC Trop-2(+)) surface phenotype was enriched in mesenchymal markers, especially EMT master regulator Slug, encoded by the Snai2 gene. To further dissect the role of Slug in mPSCs, we used transgenic Snai2(tm1.1Wbg) reporter mouse strain. Using this model, we confirmed the presence of mesenchymal traits and increase of organoid forming capacity in Slug(+) population of mPSCs. The Slug(+)-derived organoids comprised all prostate epithelial cell types - basal, luminal, and neuroendocrine. Collectively, these data uncover the important role of Slug expression in the physiology of mouse prostate stem cells.},
note = {Place: England},
keywords = {*Epithelial-Mesenchymal Transition, *Prostate, Animals, Cell Line, Cell Movement, Epithelial Cells, epithelial-to-mesenchymal transition, Male, Mice, Organoids, Prostate stem cells, Snai2/Slug, Snail Family Transcription Factors/genetics, stemness, Tumor},
pubstate = {published},
tppubtype = {article}
}
Vyhlídalová, Barbora; Krasulová, Kristýna; Pečinková, Petra; Marcalíková, Adéla; Vrzal, Radim; Zemánková, Lenka; Vančo, Jan; Trávníček, Zdeněk; Vondráček, Jan; Karasová, Martina; Mani, Sridhar; Dvořák, Zdeněk
Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization. Journal Article
In: International journal of molecular sciences, vol. 21, no. 7, 2020, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Gastrointestinal Microbiome/drug effects, Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/*metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/*metabolism, Cell Line, Cytochrome P-450 CYP1A1/genetics, Gene Expression, Genes, Genetic, Humans, Indoles, Ligands, Metabolic Networks and Pathways, Mice, Microbiome, Promoter Regions, Protein Binding, Protein Multimerization, Receptors, Reporter, tryptophan, Tryptophan/*metabolism, Tumor
@article{vyhlidalova_gut_2020,
title = {Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization.},
author = {Barbora Vyhlídalová and Kristýna Krasulová and Petra Pečinková and Adéla Marcalíková and Radim Vrzal and Lenka Zemánková and Jan Vančo and Zdeněk Trávníček and Jan Vondráček and Martina Karasová and Sridhar Mani and Zdeněk Dvořák},
doi = {10.3390/ijms21072614},
issn = {1422-0067},
year = {2020},
date = {2020-04-01},
journal = {International journal of molecular sciences},
volume = {21},
number = {7},
abstract = {We examined the effects of gut microbial catabolites of tryptophan on the aryl hydrocarbon receptor (AhR). Using a reporter gene assay, we show that all studied catabolites are low-potency agonists of human AhR. The efficacy of catabolites differed substantially, comprising agonists with no or low (i3-propionate, i3-acetate, i3-lactate, i3-aldehyde), medium (i3-ethanol, i3-acrylate, skatole, tryptamine), and high (indole, i3-acetamide, i3-pyruvate) efficacies. We displayed ligand-selective antagonist activities by i3-pyruvate, i3-aldehyde, indole, skatole, and tryptamine. Ligand binding assay identified low affinity (skatole, i3-pyruvate, and i3-acetamide) and very low affinity (i3-acrylate, i3-ethanol, indole) ligands of the murine AhR. Indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, and i3-acetamide induced CYP1A1 mRNA in intestinal LS180 and HT-29 cells, but not in the AhR-knockout HT-29 variant. We observed a similar CYP1A1 induction pattern in primary human hepatocytes. The most AhR-active catabolites (indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, i3-acetamide) elicited nuclear translocation of the AhR, followed by a formation of AhR-ARNT heterodimer and enhanced binding of the AhR to the CYP1A1 gene promoter. Collectively, we comprehensively characterized the interactions of gut microbial tryptophan catabolites with the AhR, which may expand the current understanding of their potential roles in intestinal health and disease.},
note = {Place: Switzerland},
keywords = {*Gastrointestinal Microbiome/drug effects, Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/*metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/*metabolism, Cell Line, Cytochrome P-450 CYP1A1/genetics, Gene Expression, Genes, Genetic, Humans, Indoles, Ligands, Metabolic Networks and Pathways, Mice, Microbiome, Promoter Regions, Protein Binding, Protein Multimerization, Receptors, Reporter, tryptophan, Tryptophan/*metabolism, Tumor},
pubstate = {published},
tppubtype = {article}
}
2019
Boudny, Miroslav; Zemanova, Jana; Khirsariya, Prashant; Borsky, Marek; Verner, Jan; Cerna, Jana; Oltova, Alexandra; Seda, Vaclav; Mraz, Marek; Jaros, Josef; Jaskova, Zuzana; Spunarova, Michaela; Brychtova, Yvona; Soucek, Karel; Drapela, Stanislav; Kasparkova, Marie; Mayer, Jiri; Paruch, Kamil; Trbusek, Martin
Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells. Journal Article
In: Haematologica, vol. 104, no. 12, pp. 2443–2455, 2019, ISSN: 1592-8721 0390-6078, (Place: Italy).
Abstract | Links | BibTeX | Tags: *Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays
@article{boudny_novel_2019,
title = {Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells.},
author = {Miroslav Boudny and Jana Zemanova and Prashant Khirsariya and Marek Borsky and Jan Verner and Jana Cerna and Alexandra Oltova and Vaclav Seda and Marek Mraz and Josef Jaros and Zuzana Jaskova and Michaela Spunarova and Yvona Brychtova and Karel Soucek and Stanislav Drapela and Marie Kasparkova and Jiri Mayer and Kamil Paruch and Martin Trbusek},
doi = {10.3324/haematol.2018.203430},
issn = {1592-8721 0390-6078},
year = {2019},
date = {2019-12-01},
journal = {Haematologica},
volume = {104},
number = {12},
pages = {2443–2455},
abstract = {Introduction of small-molecule inhibitors of B-cell receptor signaling and BCL2 protein significantly improves therapeutic options in chronic lymphocytic leukemia. However, some patients suffer from adverse effects mandating treatment discontinuation, and cases with TP53 defects more frequently experience early progression of the disease. Development of alternative therapeutic approaches is, therefore, of critical importance. Here we report details of the anti-chronic lymphocytic leukemia single-agent activity of MU380, our recently identified potent, selective, and metabolically robust inhibitor of checkpoint kinase 1. We also describe a newly developed enantioselective synthesis of MU380, which allows preparation of gram quantities of the substance. Checkpoint kinase 1 is a master regulator of replication operating primarily in intra-S and G(2)/M cell cycle checkpoints. Initially tested in leukemia and lymphoma cell lines, MU380 significantly potentiated efficacy of gemcitabine, a clinically used inducer of replication stress. Moreover, MU380 manifested substantial single-agent activity in both TP53-wild type and TP53-mutated leukemia and lymphoma cell lines. In chronic lymphocytic leukemia-derived cell lines MEC-1, MEC-2 (both TP53-mut), and OSU-CLL (TP53-wt) the inhibitor impaired cell cycle progression and induced apoptosis. In primary clinical samples, MU380 used as a single-agent noticeably reduced the viability of unstimulated chronic lymphocytic leukemia cells as well as those induced to proliferate by anti-CD40/IL-4 stimuli. In both cases, effects were comparable in samples harboring p53 pathway dysfunction (TP53 mutations or ATM mutations) and TP53-wt/ATM-wt cells. Lastly, MU380 also exhibited significant in vivo activity in a xenotransplant mouse model (immunodeficient strain NOD-scid IL2Rγ(null) ) where it efficiently suppressed growth of subcutaneous tumors generated from MEC-1 cells.},
note = {Place: Italy},
keywords = {*Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Machala, Miroslav; Procházková, Jiřina; Hofmanová, Jiřina; Králiková, Lucie; Slavík, Josef; Tylichová, Zuzana; Ovesná, Petra; Kozubík, Alois; Vondráček, Jan
Colon Cancer and Perturbations of the Sphingolipid Metabolism. Journal Article
In: International journal of molecular sciences, vol. 20, no. 23, 2019, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Gene Expression Regulation, Acid Ceramidase/genetics/metabolism, Alkaline Ceramidase/genetics/metabolism, Animal, Animals, Ceramides/metabolism, colon cancer (CRC) sphingolipidomics, colon cancer cells, Colonic Neoplasms/*enzymology/genetics/pathology, colorectal cancer, Cultured, Disease Models, glycosphingolipid, Humans, Lactosylceramide, Lactosylceramides/*metabolism, Lipid Metabolism/*genetics, Lysophospholipids/metabolism, Neoplastic, Neutral Ceramidase/genetics/metabolism, Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism, Proto-Oncogene Proteins c-akt/genetics/metabolism, sphingolipid, Sphingolipids/*metabolism, Sphingosine N-Acyltransferase/genetics/metabolism, sphingosine-1-phosphate, Sphingosine/analogs & derivatives/metabolism, Tumor Cells
@article{machala_colon_2019,
title = {Colon Cancer and Perturbations of the Sphingolipid Metabolism.},
author = {Miroslav Machala and Jiřina Procházková and Jiřina Hofmanová and Lucie Králiková and Josef Slavík and Zuzana Tylichová and Petra Ovesná and Alois Kozubík and Jan Vondráček},
doi = {10.3390/ijms20236051},
issn = {1422-0067},
year = {2019},
date = {2019-11-01},
journal = {International journal of molecular sciences},
volume = {20},
number = {23},
abstract = {The development and progression of colorectal cancer (CRC), a major cause of cancer-related death in the western world, is accompanied with alterations of sphingolipid (SL) composition in colon tumors. A number of enzymes involved in the SL metabolism have been found to be deregulated in human colon tumors, in experimental rodent studies, and in human colon cancer cells in vitro. Therefore, the enzymatic pathways that modulate SL levels have received a significant attention, due to their possible contribution to CRC development, or as potential therapeutic targets. Many of these enzymes are associated with an increased sphingosine-1-phosphate/ceramide ratio, which is in turn linked with increased colon cancer cell survival, proliferation and cancer progression. Nevertheless, more attention should also be paid to the more complex SLs, including specific glycosphingolipids, such as lactosylceramides, which can be also deregulated during CRC development. In this review, we focus on the potential roles of individual SLs/SL metabolism enzymes in colon cancer, as well as on the pros and cons of employing the current in vitro models of colon cancer cells for lipidomic studies investigating the SL metabolism in CRC.},
note = {Place: Switzerland},
keywords = {*Gene Expression Regulation, Acid Ceramidase/genetics/metabolism, Alkaline Ceramidase/genetics/metabolism, Animal, Animals, Ceramides/metabolism, colon cancer (CRC) sphingolipidomics, colon cancer cells, Colonic Neoplasms/*enzymology/genetics/pathology, colorectal cancer, Cultured, Disease Models, glycosphingolipid, Humans, Lactosylceramide, Lactosylceramides/*metabolism, Lipid Metabolism/*genetics, Lysophospholipids/metabolism, Neoplastic, Neutral Ceramidase/genetics/metabolism, Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism, Proto-Oncogene Proteins c-akt/genetics/metabolism, sphingolipid, Sphingolipids/*metabolism, Sphingosine N-Acyltransferase/genetics/metabolism, sphingosine-1-phosphate, Sphingosine/analogs & derivatives/metabolism, Tumor Cells},
pubstate = {published},
tppubtype = {article}
}
Jiřík, Radovan; Taxt, Torfinn; Macíček, Ondřej; Bartoš, Michal; Kratochvíla, Jiří; Souček, Karel; Dražanová, Eva; Krátká, Lucie; Hampl, Aleš; Starčuk, Zenon Jr
Blind deconvolution estimation of an arterial input function for small animal DCE-MRI. Journal Article
In: Magnetic resonance imaging, vol. 62, pp. 46–56, 2019, ISSN: 1873-5894 0730-725X, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Magnetic Resonance Imaging, Algorithms, Animals, Arterial input function, Arteries/*diagnostic imaging, Blind deconvolution, Computer Simulation, Computer-Assisted/*methods, Contrast Media/*pharmacokinetics, DCE-MRI, Humans, Image Processing, Inbred BALB C, Mice, Necrosis/pathology, Perfusion, Pharmacokinetics, Regression Analysis, Reproducibility of Results, Signal-To-Noise Ratio
@article{jirik_blind_2019,
title = {Blind deconvolution estimation of an arterial input function for small animal DCE-MRI.},
author = {Radovan Jiřík and Torfinn Taxt and Ondřej Macíček and Michal Bartoš and Jiří Kratochvíla and Karel Souček and Eva Dražanová and Lucie Krátká and Aleš Hampl and Zenon Jr Starčuk},
doi = {10.1016/j.mri.2019.05.024},
issn = {1873-5894 0730-725X},
year = {2019},
date = {2019-10-01},
journal = {Magnetic resonance imaging},
volume = {62},
pages = {46–56},
abstract = {PURPOSE: One of the main obstacles for reliable quantitative dynamic contrast-enhanced (DCE) MRI is the need for accurate knowledge of the arterial input function (AIF). This is a special challenge for preclinical small animal applications where it is very difficult to measure the AIF without partial volume and flow artifacts. Furthermore, using advanced pharmacokinetic models (allowing estimation of blood flow and permeability-surface area product in addition to the classical perfusion parameters) poses stricter requirements on the accuracy and precision of AIF estimation. This paper addresses small animal DCE-MRI with advanced pharmacokinetic models and presents a method for estimation of the AIF based on blind deconvolution. METHODS: A parametric AIF model designed for small animal physiology and use of advanced pharmacokinetic models is proposed. The parameters of the AIF are estimated using multichannel blind deconvolution. RESULTS: Evaluation on simulated data show that for realistic signal to noise ratios blind deconvolution AIF estimation leads to comparable results as the use of the true AIF. Evaluation on real data based on DCE-MRI with two contrast agents of different molecular weights showed a consistence with the known effects of the molecular weight. CONCLUSION: Multi-channel blind deconvolution using the proposed AIF model specific for small animal DCE-MRI provides reliable perfusion parameter estimates under realistic signal to noise conditions.},
note = {Place: Netherlands},
keywords = {*Magnetic Resonance Imaging, Algorithms, Animals, Arterial input function, Arteries/*diagnostic imaging, Blind deconvolution, Computer Simulation, Computer-Assisted/*methods, Contrast Media/*pharmacokinetics, DCE-MRI, Humans, Image Processing, Inbred BALB C, Mice, Necrosis/pathology, Perfusion, Pharmacokinetics, Regression Analysis, Reproducibility of Results, Signal-To-Noise Ratio},
pubstate = {published},
tppubtype = {article}
}
Šimečková, Šárka; Kahounová, Zuzana; Fedr, Radek; Remšík, Ján; Slabáková, Eva; Suchánková, Tereza; Procházková, Jiřina; Bouchal, Jan; Kharaishvili, Gvantsa; Král, Milan; Beneš, Petr; Souček, Karel
High Skp2 expression is associated with a mesenchymal phenotype and increased tumorigenic potential of prostate cancer cells. Journal Article
In: Scientific reports, vol. 9, no. 1, pp. 5695, 2019, ISSN: 2045-2322, (Place: England).
Abstract | Links | BibTeX | Tags: *Epithelial-Mesenchymal Transition, *Gene Expression Regulation, Animals, CD24 Antigen/genetics, Cell Line, Humans, Hyaluronan Receptors/genetics, Male, Mice, Neoplasm Grading, Neoplastic, Neoplastic Stem Cells/metabolism/*physiology, Nude, PC-3 Cells, Prostatic Neoplasms/*genetics/metabolism/physiopathology, S-Phase Kinase-Associated Proteins/*genetics, Tumor, Xenograft Model Antitumor Assays
@article{simeckova_high_2019,
title = {High Skp2 expression is associated with a mesenchymal phenotype and increased tumorigenic potential of prostate cancer cells.},
author = {Šárka Šimečková and Zuzana Kahounová and Radek Fedr and Ján Remšík and Eva Slabáková and Tereza Suchánková and Jiřina Procházková and Jan Bouchal and Gvantsa Kharaishvili and Milan Král and Petr Beneš and Karel Souček},
doi = {10.1038/s41598-019-42131-y},
issn = {2045-2322},
year = {2019},
date = {2019-04-01},
journal = {Scientific reports},
volume = {9},
number = {1},
pages = {5695},
abstract = {Skp2 is a crucial component of SCF(Skp2) E3 ubiquitin ligase and is often overexpressed in various types of cancer, including prostate cancer (PCa). The epithelial-to-mesenchymal transition (EMT) is involved in PCa progression. The acquisition of a mesenchymal phenotype that results in a cancer stem cell (CSC) phenotype in PCa was described. Therefore, we aimed to investigate the expression and localization of Skp2 in clinical samples from patients with PCa, the association of Skp2 with EMT status, and the role of Skp2 in prostate CSC. We found that nuclear expression of Skp2 was increased in patients with PCa compared to those with benign hyperplasia, and correlated with high Gleason score in PCa patients. Increased Skp2 expression was observed in PCa cell lines with mesenchymal and CSC-like phenotype compared to their epithelial counterparts. Conversely, the CSC-like phenotype was diminished in cells in which SKP2 expression was silenced. Furthermore, we observed that Skp2 downregulation led to the decrease in subpopulation of CD44(+)CD24(-) cancer stem-like cells. Finally, we showed that high expression levels of both CD24 and CD44 were associated with favorable recurrence-free survival for PCa patients. This study uncovered the Skp2-mediated CSC-like phenotype with oncogenic functions in PCa.},
note = {Place: England},
keywords = {*Epithelial-Mesenchymal Transition, *Gene Expression Regulation, Animals, CD24 Antigen/genetics, Cell Line, Humans, Hyaluronan Receptors/genetics, Male, Mice, Neoplasm Grading, Neoplastic, Neoplastic Stem Cells/metabolism/*physiology, Nude, PC-3 Cells, Prostatic Neoplasms/*genetics/metabolism/physiopathology, S-Phase Kinase-Associated Proteins/*genetics, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Šimek, Matěj; Hermannová, Martina; Šmejkalová, Daniela; Foglová, Tereza; Souček, Karel; Binó, Lucia; Velebný, Vladimír
LC-MS/MS study of in vivo fate of hyaluronan polymeric micelles carrying doxorubicin. Journal Article
In: Carbohydrate polymers, vol. 209, pp. 181–189, 2019, ISSN: 1879-1344 0144-8617, (Place: England).
Abstract | Links | BibTeX | Tags: *Micelles, Animals, Biodistribution, Chromatography, Doxorubicin, Doxorubicin/*chemistry/pharmacokinetics, Drug Carriers/*chemistry, Drug Liberation, Female, Hyaluronan, Hyaluronic Acid/*chemistry, Liquid, Mice, Molecular Weight, Pharmacokinetics, Polymeric micelles, Tandem Mass Spectrometry, Tissue Distribution
@article{simek_lc-msms_2019,
title = {LC-MS/MS study of in vivo fate of hyaluronan polymeric micelles carrying doxorubicin.},
author = {Matěj Šimek and Martina Hermannová and Daniela Šmejkalová and Tereza Foglová and Karel Souček and Lucia Binó and Vladimír Velebný},
doi = {10.1016/j.carbpol.2018.12.104},
issn = {1879-1344 0144-8617},
year = {2019},
date = {2019-04-01},
journal = {Carbohydrate polymers},
volume = {209},
pages = {181–189},
abstract = {A better understanding of in vivo behavior of nanocarriers is necessary for further improvement in their development. Here we present a novel approach, where both the matrix and the drug can be analyzed by LCMS/MS after one sample handling. The developed method was applied for the comparison of pharmacokinetic profile of free and encapsulated doxorubicin (DOX) in oleyl hyaluronan (HA-C18:1) polymeric micelles. The results indicated that nanocarriers were rapidly dissociated upon in vivo administration. Despite this fact, the administration of encapsulated DOX led to its longer circulation time and enhanced tumor targeting. This effect was not observed injecting blank HA-C18:1 micelles followed by unencapsulated DOX. Biodistribution studies and molecular weight estimation of the carrier matrix indicated relatively high stability of HA-C18:1 ester bond in bloodstream and complete elimination of the derivative within 72 h. The proposed methodology provides a novel strategy to elucidate the pharmacokinetic behavior of polysaccharide-based drug delivery systems.},
note = {Place: England},
keywords = {*Micelles, Animals, Biodistribution, Chromatography, Doxorubicin, Doxorubicin/*chemistry/pharmacokinetics, Drug Carriers/*chemistry, Drug Liberation, Female, Hyaluronan, Hyaluronic Acid/*chemistry, Liquid, Mice, Molecular Weight, Pharmacokinetics, Polymeric micelles, Tandem Mass Spectrometry, Tissue Distribution},
pubstate = {published},
tppubtype = {article}
}
McCarrick, Sarah; Cunha, Virginia; Zapletal, Ondřej; Vondráček, Jan; Dreij, Kristian
In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons. Journal Article
In: Environmental pollution (Barking, Essex : 1987), vol. 246, pp. 678–687, 2019, ISSN: 1873-6424 0269-7491, (Place: England).
Abstract | Links | BibTeX | Tags: *DNA Damage, Animals, Cell Culture Techniques, Cell Survival/drug effects/genetics, Comet assay, Embryonic Development/drug effects/genetics, Environmental Monitoring/*methods, Epithelial Cells/drug effects/pathology, Genotoxicity, Hep G2 Cells, Humans, Micronucleus assay, Mutagens/analysis/*toxicity, Oxygen/chemistry, Oxygenated PAH, Polycyclic Aromatic Hydrocarbons/analysis/*toxicity, Zebrafish, Zebrafish/embryology
@article{mccarrick_vitro_2019,
title = {In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons.},
author = {Sarah McCarrick and Virginia Cunha and Ondřej Zapletal and Jan Vondráček and Kristian Dreij},
doi = {10.1016/j.envpol.2018.12.092},
issn = {1873-6424 0269-7491},
year = {2019},
date = {2019-03-01},
journal = {Environmental pollution (Barking, Essex : 1987)},
volume = {246},
pages = {678–687},
abstract = {Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a group of environmental pollutants found in complex mixtures together with PAHs. In contrast to the extensively studied PAHs, which have been established to have mutagenic and carcinogenic properties, much less is known about the effects of oxy-PAHs. The present work aimed to investigate the genotoxic potency of a set of environmentally relevant oxy-PAHs along with environmental soil samples in human bronchial epithelial cells (HBEC). We found that all oxy-PAHs tested induced DNA strand breaks in a dose-dependent manner and some of the oxy-PAHs further induced micronuclei formation. Our results showed weak effects in response to the oxy-PAH containing subfraction of the soil sample. The genotoxic potency was confirmed in both HBEC and HepG2 cells following exposure to oxy-PAHs by an increased level of phospho-Chk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro. We further exposed zebrafish embryos to single oxy-PAHs or a binary mixture with PAH benzo[a]pyrene (B[a]P) and found the mixture to induce comparable or greater effects on the induction of DNA strand breaks compared to the sum of that induced by B[a]P and oxy-PAHs alone. In conclusion, oxy-PAHs were found to elicit genotoxic effects at similar or higher levels to that of B[a]P which indicates that oxy-PAHs may contribute significantly to the total carcinogenic potency of environmental PAH mixtures. This emphasizes further investigations of these compounds as well as the need to include oxy-PAHs in environmental monitoring programs in order to improve health risk assessment.},
note = {Place: England},
keywords = {*DNA Damage, Animals, Cell Culture Techniques, Cell Survival/drug effects/genetics, Comet assay, Embryonic Development/drug effects/genetics, Environmental Monitoring/*methods, Epithelial Cells/drug effects/pathology, Genotoxicity, Hep G2 Cells, Humans, Micronucleus assay, Mutagens/analysis/*toxicity, Oxygen/chemistry, Oxygenated PAH, Polycyclic Aromatic Hydrocarbons/analysis/*toxicity, Zebrafish, Zebrafish/embryology},
pubstate = {published},
tppubtype = {article}
}
2018
Remšík, Ján; Binó, Lucia; Kahounová, Zuzana; Kharaishvili, Gvantsa; Šimecková, Šárka; Fedr, Radek; Kucírková, Tereza; Lenárt, Sára; Muresan, Ximena Maria; Slabáková, Eva; Knopfová, Lucia; Bouchal, Jan; Král, Milan; Beneš, Petr; Soucek, Karel
Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition. Journal Article
In: Carcinogenesis, vol. 39, no. 11, pp. 1411–1418, 2018, ISSN: 1460-2180 0143-3334, (Place: England).
Abstract | Links | BibTeX | Tags: Animals, Antigens, Breast Neoplasms/mortality/*pathology, Cadherins/biosynthesis, Carcinoma/*pathology, CD/biosynthesis, Cell Adhesion Molecules/genetics/*metabolism, Cell Line, Disease Progression, DNA Methylation/genetics, Epithelial Cells/*metabolism, Epithelial-Mesenchymal Transition/physiology, Female, Humans, Inbred BALB C, Male, Mice, Neoplasm/genetics/*metabolism, Prostatic Neoplasms/mortality/*pathology, Tumor, Xenograft Model Antitumor Assays
@article{remsik_trop-2_2018,
title = {Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition.},
author = {Ján Remšík and Lucia Binó and Zuzana Kahounová and Gvantsa Kharaishvili and Šárka Šimecková and Radek Fedr and Tereza Kucírková and Sára Lenárt and Ximena Maria Muresan and Eva Slabáková and Lucia Knopfová and Jan Bouchal and Milan Král and Petr Beneš and Karel Soucek},
doi = {10.1093/carcin/bgy095},
issn = {1460-2180 0143-3334},
year = {2018},
date = {2018-12-01},
journal = {Carcinogenesis},
volume = {39},
number = {11},
pages = {1411–1418},
abstract = {The cell surface glycoprotein Trop-2 is commonly overexpressed in carcinomas and represents an exceptional antigen for targeted therapy. Here, we provide evidence that surface Trop-2 expression is functionally connected with an epithelial phenotype in breast and prostate cell lines and in patient tumor samples. We further show that Trop-2 expression is suppressed epigenetically or through the action of epithelial-to-mesenchymal transition transcription factors and that deregulation of Trop-2 expression is linked with cancer progression and poor patient prognosis. Moreover, our data suggest that the cancer plasticity-driven intratumoral heterogeneity in Trop-2 expression may significantly contribute to response and resistance to therapies targeting Trop-2-expressing cells.},
note = {Place: England},
keywords = {Animals, Antigens, Breast Neoplasms/mortality/*pathology, Cadherins/biosynthesis, Carcinoma/*pathology, CD/biosynthesis, Cell Adhesion Molecules/genetics/*metabolism, Cell Line, Disease Progression, DNA Methylation/genetics, Epithelial Cells/*metabolism, Epithelial-Mesenchymal Transition/physiology, Female, Humans, Inbred BALB C, Male, Mice, Neoplasm/genetics/*metabolism, Prostatic Neoplasms/mortality/*pathology, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Strapáčová, Simona; Brenerová, Petra; Krčmář, Pavel; Andersson, Patrik; Ede, Karin I.; Duursen, Majorie B. M.; Berg, Martin; Vondráček, Jan; Machala, Miroslav
Relative effective potencies of dioxin-like compounds in rodent and human lung cell models. Journal Article
In: Toxicology, vol. 404-405, pp. 33–41, 2018, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: A549 Cells, Acute/methods, AhR, Animals, Dioxin-like compounds, Dioxins/*toxicity, Dose-Response Relationship, Drug, Endogenous target genes, Female, Humans, Lung epithelial cells, Lung/*drug effects/metabolism/*pathology, Mice, Rats, Relative effective potencies, Rodentia, Species Specificity, Sprague-Dawley, Toxicity Tests
@article{strapacova_relative_2018,
title = {Relative effective potencies of dioxin-like compounds in rodent and human lung cell models.},
author = {Simona Strapáčová and Petra Brenerová and Pavel Krčmář and Patrik Andersson and Karin I. Ede and Majorie B. M. Duursen and Martin Berg and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.tox.2018.05.004},
issn = {1879-3185 0300-483X},
year = {2018},
date = {2018-07-01},
journal = {Toxicology},
volume = {404-405},
pages = {33–41},
abstract = {Toxicity of dioxin-like compounds (DLCs), such as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls, is largely mediated via aryl hydrocarbon receptor (AhR) activation. AhR-mediated gene expression can be tissue-specific; however, the inducibility of AhR in the lungs, a major target of DLCs, remains poorly characterized. In this study, we developed relative effective potencies (REPs) for a series of DLCs in both rodent (MLE-12, RLE-6TN) and human (A549, BEAS-2B) lung and bronchial epithelial cell models, using expression of both canonical (CYP1A1, CYP1B1) and less well characterized (TIPARP, AHRR, ALDH3A1) AhR target genes. The use of rat, murine and human cell lines allowed us to determine both species-specific differences in sensitivity of responses to DLCs in lung cellular models and deviations from established WHO toxic equivalency factor values (TEF) values. Finally, expression of selected AhR target genes was determined in vivo, using lung tissues of female rats exposed to a single oral dose of DLCs and compared with the obtained in vitro data. All cell models were highly sensitive to DLCs, with murine MLE-12 cells being the most sensitive and human A549 cells being the least sensitive. Interestingly, we observed that four AhR target genes were more sensitive than CYP1A1 in lung cell models (CYP1B1, AHRR, TIPARP and/or ALDH3A1). We found some deviations, with strikingly low REPs for polychlorinated biphenyls PCBs 105, 167, 169 and 189 in rat RLE-6TN cells-derived REPs for a series of 20 DLCs evaluated in this study, as compared with WHO TEF values. For other DLCs, including PCBs 126, 118 and 156, REPs were generally in good accordance with WHO TEF values. This conclusion was supported by in vivo data obtained in rat lung tissue. However, we found that human lung REPs for 2,3,4,7,8-pentachlorodibenzofuran and PCB 126 were much lower than the respective rat lung REPs. Furthermore, PCBs 118 and 156 were almost inactive in these human cells. Our observations may have consequences for risk assessment. Given the differences observed between rat and human data sets, development of human-specific REP/TEFs, and the use of CYP1B1, AHRR, TIPARP and/or ALDH3A1 mRNA inducibility as sensitive endpoints, are recommended for assessment of relative effective potencies of DLCs.},
note = {Place: Ireland},
keywords = {A549 Cells, Acute/methods, AhR, Animals, Dioxin-like compounds, Dioxins/*toxicity, Dose-Response Relationship, Drug, Endogenous target genes, Female, Humans, Lung epithelial cells, Lung/*drug effects/metabolism/*pathology, Mice, Rats, Relative effective potencies, Rodentia, Species Specificity, Sprague-Dawley, Toxicity Tests},
pubstate = {published},
tppubtype = {article}
}
Pěnčíková, Kateřina; Brenerová, Petra; Svržková, Lucie; Hrubá, Eva; Pálková, Lenka; Vondráček, Jan; Lehmler, Hans-Joachim; Machala, Miroslav
Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro. Journal Article
In: Environmental science and pollution research international, vol. 25, no. 17, pp. 16411–16419, 2018, ISSN: 1614-7499 0944-1344, (Place: Germany).
Abstract | Links | BibTeX | Tags: Androgen receptor, Animals, Atropisomer, Biotransformation, Chiral, Constitutive Androstane Receptor, Cytoplasmic and Nuclear/*chemistry/metabolism, Estrogen receptors, Humans, Polychlorinated biphenyl, Polychlorinated Biphenyls/*chemistry, Pregnane X receptor, Receptors, Stereoisomerism, Steroid/chemistry/metabolism
@article{pencikova_atropisomers_2018,
title = {Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro.},
author = {Kateřina Pěnčíková and Petra Brenerová and Lucie Svržková and Eva Hrubá and Lenka Pálková and Jan Vondráček and Hans-Joachim Lehmler and Miroslav Machala},
doi = {10.1007/s11356-017-0683-x},
issn = {1614-7499 0944-1344},
year = {2018},
date = {2018-06-01},
journal = {Environmental science and pollution research international},
volume = {25},
number = {17},
pages = {16411–16419},
abstract = {PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.},
note = {Place: Germany},
keywords = {Androgen receptor, Animals, Atropisomer, Biotransformation, Chiral, Constitutive Androstane Receptor, Cytoplasmic and Nuclear/*chemistry/metabolism, Estrogen receptors, Humans, Polychlorinated biphenyl, Polychlorinated Biphenyls/*chemistry, Pregnane X receptor, Receptors, Stereoisomerism, Steroid/chemistry/metabolism},
pubstate = {published},
tppubtype = {article}
}
Vargová, Jana; Mikeš, Jaromír; Jendželovský, Rastislav; Mikešová, Lucia; Kuchárová, Barbora; Čulka, Ľubomír; Fedr, Radek; Remšík, Ján; Souček, Karel; Kozubík, Alois; Fedoročko, Peter
Hypericin affects cancer side populations via competitive inhibition of BCRP. Journal Article
In: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 99, pp. 511–522, 2018, ISSN: 1950-6007 0753-3322, (Place: France).
Abstract | Links | BibTeX | Tags: ABC transporters, Aldehyde Dehydrogenase/metabolism, Animals, Anthracenes, ATP Binding Cassette Transporter, Biomarkers, Cancer stem-like cells, Carcinogenesis/drug effects/metabolism/pathology, Cell Line, Cellular/drug effects/metabolism/pathology, Clone Cells, Drug resistance, Humans, Hypericin, Member 1/metabolism, Member 2/*metabolism, Mice, Neoplasm Proteins/*metabolism, Neoplasms/*metabolism/*pathology, Neoplastic Stem Cells/drug effects/metabolism/pathology, Perylene/*analogs & derivatives/pharmacology, Phenotype, SCID, Side population, Side-Population Cells/drug effects/*pathology, Spheroids, St. John’s wort, Subfamily B, Subfamily G, Substrate Specificity/drug effects, Survival Analysis, Tumor, Tumor/metabolism
@article{vargova_hypericin_2018,
title = {Hypericin affects cancer side populations via competitive inhibition of BCRP.},
author = {Jana Vargová and Jaromír Mikeš and Rastislav Jendželovský and Lucia Mikešová and Barbora Kuchárová and Ľubomír Čulka and Radek Fedr and Ján Remšík and Karel Souček and Alois Kozubík and Peter Fedoročko},
doi = {10.1016/j.biopha.2018.01.074},
issn = {1950-6007 0753-3322},
year = {2018},
date = {2018-03-01},
journal = {Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie},
volume = {99},
pages = {511–522},
abstract = {OBJECTIVE: Cancer stem-like cells (CSLCs) are considered a root of tumorigenicity and resistance. However, their identification remains challenging. The use of the side population (SP) assay as a credible marker of CSLCs remains controversial. The SP assay relies on the elevated activity of ABC transporters that, in turn, can be modulated by hypericin (HYP), a photosensitizer and bioactive compound of St. John's Wort (Hypericum perforatum), a popular over-the-counter antidepressant. Here we aimed to comprehensively characterize the SP phenotype of cancer cells and to determine the impact of HYP on these cells. METHODS: Flow cytometry and sorting-based assays were employed, including CD24-, CD44-, CD133-, and ALDH-positivity, clonogenicity, 3D-forming ability, ABC transporter expression and activity, and intracellular accumulation of HYP/Hoechst 33342. The tumorigenic ability of SP, nonSP, and HYP-treated cells was verified by xenotransplantation into immunodeficient mice. RESULTS: The SP phenotype was associated with elevated expression of several investigated transporters and more intensive growth in non-adherent conditions but not with higher clonogenicity, tumorigenicity or ALDH-positivity. Despite stimulated BCRP level and MRP1 activity, HYP reversibly decreased the SP proportion, presumably via competitive inhibition of BCRP. HYP-selected SP cells acquired additional traits of resistance and extensively eliminated HYP. CONCLUSIONS: Our results suggest that SP is not an unequivocal CSLC-marker. However, SP could play an important role in modulating HYP-treatment and serve as a negative predictive tool for HYP-based therapies. Moreover, the use of supplements containing HYP by cancer patients should be carefully considered, due to its proposed effect on drug efflux and complex impact on tumor cells, which have not yet been sufficiently characterized.},
note = {Place: France},
keywords = {ABC transporters, Aldehyde Dehydrogenase/metabolism, Animals, Anthracenes, ATP Binding Cassette Transporter, Biomarkers, Cancer stem-like cells, Carcinogenesis/drug effects/metabolism/pathology, Cell Line, Cellular/drug effects/metabolism/pathology, Clone Cells, Drug resistance, Humans, Hypericin, Member 1/metabolism, Member 2/*metabolism, Mice, Neoplasm Proteins/*metabolism, Neoplasms/*metabolism/*pathology, Neoplastic Stem Cells/drug effects/metabolism/pathology, Perylene/*analogs & derivatives/pharmacology, Phenotype, SCID, Side population, Side-Population Cells/drug effects/*pathology, Spheroids, St. John’s wort, Subfamily B, Subfamily G, Substrate Specificity/drug effects, Survival Analysis, Tumor, Tumor/metabolism},
pubstate = {published},
tppubtype = {article}
}
2017
Paculová, Hana; Kramara, Juraj; Šimečková, Šárka; Fedr, Radek; Souček, Karel; Hylse, Ondřej; Paruch, Kamil; Svoboda, Marek; Mistrík, Martin; Kohoutek, Jiří
BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors. Journal Article
In: Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, vol. 39, no. 10, pp. 1010428317727479, 2017, ISSN: 1423-0380 1010-4283, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, BRCA1, BRCA1 Protein/antagonists & inhibitors/*genetics, CDK12, Checkpoint Kinase 1/*genetics, CHK1 inhibitor, Colorectal Neoplasms/drug therapy/*genetics/pathology, Cyclin-Dependent Kinases/antagonists & inhibitors/*genetics, DNA damage response, DNA Damage/drug effects, Drug resistance, Gene Expression Regulation, Gene Silencing, HCT116 Cells, Humans, Mice, Neoplasm/genetics, Neoplastic/drug effects, Poly (ADP-Ribose) Polymerase-1/genetics, Pyrazoles/administration & dosage, Pyrimidines/administration & dosage, Transcription, Xenograft Model Antitumor Assays
@article{paculova_brca1_2017,
title = {BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors.},
author = {Hana Paculová and Juraj Kramara and Šárka Šimečková and Radek Fedr and Karel Souček and Ondřej Hylse and Kamil Paruch and Marek Svoboda and Martin Mistrík and Jiří Kohoutek},
doi = {10.1177/1010428317727479},
issn = {1423-0380 1010-4283},
year = {2017},
date = {2017-10-01},
journal = {Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine},
volume = {39},
number = {10},
pages = {1010428317727479},
abstract = {A broad spectrum of tumors develop resistance to classic chemotherapy, necessitating the discovery of new therapies. One successful strategy exploits the synthetic lethality between poly(ADP-ribose) polymerase 1/2 proteins and DNA damage response genes, including BRCA1, a factor involved in homologous recombination-mediated DNA repair, and CDK12, a transcriptional kinase known to regulate the expression of DDR genes. CHK1 inhibitors have been shown to enhance the anti-cancer effect of DNA-damaging compounds. Since loss of BRCA1 increases replication stress and leads to DNA damage, we tested a hypothesis that CDK12- or BRCA1-depleted cells rely extensively on S-phase-related CHK1 functions for survival. The silencing of BRCA1 or CDK12 sensitized tumor cells to CHK1 inhibitors in vitro and in vivo. BRCA1 downregulation combined with CHK1 inhibition induced excessive amounts of DNA damage, resulting in an inability to complete the S-phase. Therefore, we suggest CHK1 inhibition as a strategy for targeting BRCA1- or CDK12-deficient tumors.},
note = {Place: Netherlands},
keywords = {Animals, BRCA1, BRCA1 Protein/antagonists & inhibitors/*genetics, CDK12, Checkpoint Kinase 1/*genetics, CHK1 inhibitor, Colorectal Neoplasms/drug therapy/*genetics/pathology, Cyclin-Dependent Kinases/antagonists & inhibitors/*genetics, DNA damage response, DNA Damage/drug effects, Drug resistance, Gene Expression Regulation, Gene Silencing, HCT116 Cells, Humans, Mice, Neoplasm/genetics, Neoplastic/drug effects, Poly (ADP-Ribose) Polymerase-1/genetics, Pyrazoles/administration & dosage, Pyrimidines/administration & dosage, Transcription, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Slabáková, Eva; Culig, Zoran; Remšík, Ján; Souček, Karel
Alternative mechanisms of miR-34a regulation in cancer. Journal Article
In: Cell death & disease, vol. 8, no. 10, pp. e3100, 2017, ISSN: 2041-4889, (Place: England).
Abstract | Links | BibTeX | Tags: *Genes, Animals, Epigenesis, Epithelial-Mesenchymal Transition/genetics, Gene Expression Regulation, Genetic/genetics, Humans, MicroRNAs/*genetics, Neoplasms/*genetics/*pathology, Neoplastic/genetics, Promoter Regions, Tumor Suppressor, Tumor Suppressor Protein p53/*genetics
@article{slabakova_alternative_2017,
title = {Alternative mechanisms of miR-34a regulation in cancer.},
author = {Eva Slabáková and Zoran Culig and Ján Remšík and Karel Souček},
doi = {10.1038/cddis.2017.495},
issn = {2041-4889},
year = {2017},
date = {2017-10-01},
journal = {Cell death & disease},
volume = {8},
number = {10},
pages = {e3100},
abstract = {MicroRNA miR-34a is recognized as a master regulator of tumor suppression. The strategy of miR-34a replacement has been investigated in clinical trials as the first attempt of miRNA application in cancer treatment. However, emerging outcomes promote the re-evaluation of existing knowledge and urge the need for better understanding the complex biological role of miR-34a. The targets of miR-34a encompass numerous regulators of cancer cell proliferation, survival and resistance to therapy. MiR-34a expression is transcriptionally controlled by p53, a crucial tumor suppressor pathway, often disrupted in cancer. Moreover, miR-34a abundance is fine-tuned by context-dependent feedback loops. The function and effects of exogenously delivered or re-expressed miR-34a on the background of defective p53 therefore remain prominent issues in miR-34a based therapy. In this work, we review p53-independent mechanisms regulating the expression of miR-34a. Aside from molecules directly interacting with MIR34A promoter, processes affecting epigenetic regulation and miRNA maturation are discussed. Multiple mechanisms operate in the context of cancer-associated phenomena, such as aberrant oncogene signaling, EMT or inflammation. Since p53-dependent tumor-suppressive mechanisms are disturbed in a substantial proportion of malignancies, we summarize the effects of miR-34a modulation in cell and animal models in the clinically relevant context of disrupted or insufficient p53 function.},
note = {Place: England},
keywords = {*Genes, Animals, Epigenesis, Epithelial-Mesenchymal Transition/genetics, Gene Expression Regulation, Genetic/genetics, Humans, MicroRNAs/*genetics, Neoplasms/*genetics/*pathology, Neoplastic/genetics, Promoter Regions, Tumor Suppressor, Tumor Suppressor Protein p53/*genetics},
pubstate = {published},
tppubtype = {article}
}
Samadder, Pounami; Suchánková, Tereza; Hylse, Ondřej; Khirsariya, Prashant; Nikulenkov, Fedor; Drápela, Stanislav; Straková, Nicol; Vaňhara, Petr; Vašíčková, Kateřina; Kolářová, Hana; Binó, Lucia; Bittová, Miroslava; Ovesná, Petra; Kollár, Peter; Fedr, Radek; Ešner, Milan; Jaroš, Josef; Hampl, Aleš; Krejčí, Lumír; Paruch, Kamil; Souček, Karel
In: Molecular cancer therapeutics, vol. 16, no. 9, pp. 1831–1842, 2017, ISSN: 1538-8514 1535-7163, (Place: United States).
Abstract | Links | BibTeX | Tags: Animal, Animals, Antineoplastic Agents/*chemical synthesis/*pharmacology, Apoptosis/drug effects, Biomarkers, Cell Cycle Checkpoints/drug effects, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1/*antagonists & inhibitors, Dealkylation/drug effects, Disease Models, Dose-Response Relationship, Drug, Drug resistance, Humans, Methylation, Mice, Molecular Structure, Neoplasm/*drug effects, Protein Kinase Inhibitors/*chemical synthesis/*pharmacology, Pyrazoles/pharmacology, Pyrimidines/pharmacology, Tumor, Xenograft Model Antitumor Assays
@article{samadder_synthesis_2017,
title = {Synthesis and Profiling of a Novel Potent Selective Inhibitor of CHK1 Kinase Possessing Unusual N-trifluoromethylpyrazole Pharmacophore Resistant to Metabolic N-dealkylation.},
author = {Pounami Samadder and Tereza Suchánková and Ondřej Hylse and Prashant Khirsariya and Fedor Nikulenkov and Stanislav Drápela and Nicol Straková and Petr Vaňhara and Kateřina Vašíčková and Hana Kolářová and Lucia Binó and Miroslava Bittová and Petra Ovesná and Peter Kollár and Radek Fedr and Milan Ešner and Josef Jaroš and Aleš Hampl and Lumír Krejčí and Kamil Paruch and Karel Souček},
doi = {10.1158/1535-7163.MCT-17-0018},
issn = {1538-8514 1535-7163},
year = {2017},
date = {2017-09-01},
journal = {Molecular cancer therapeutics},
volume = {16},
number = {9},
pages = {1831–1842},
abstract = {Checkpoint-mediated dependency of tumor cells can be deployed to selectively kill them without substantial toxicity to normal cells. Specifically, loss of CHK1, a serine threonine kinase involved in the surveillance of the G(2)-M checkpoint in the presence of replication stress inflicted by DNA-damaging drugs, has been reported to dramatically influence the viability of tumor cells. CHK1's pivotal role in maintaining genomic stability offers attractive opportunity for increasing the selectivity, effectivity, and reduced toxicity of chemotherapy. Some recently identified CHK1 inhibitors entered clinical trials in combination with DNA antimetabolites. Herein, we report synthesis and profiling of MU380, a nontrivial analogue of clinically profiled compound SCH900776 possessing the highly unusual N-trifluoromethylpyrazole motif, which was envisioned not to undergo metabolic oxidative dealkylation and thereby provide greater robustness to the compound. MU380 is a selective and potent inhibitor of CHK1 which sensitizes a variety of tumor cell lines to hydroxyurea or gemcitabine up to 10 times. MU380 shows extended inhibitory effects in cells, and unlike SCH900776, does not undergo in vivo N-dealkylation to the significantly less selective metabolite. Compared with SCH900776, MU380 in combination with GEM causes higher accumulation of DNA damage in tumor cells and subsequent enhanced cell death, and is more efficacious in the A2780 xenograft mouse model. Overall, MU380 represents a novel state-of-the-art CHK1 inhibitor with high potency, selectivity, and improved metabolic robustness to oxidative N-dealkylation. Mol Cancer Ther; 16(9); 1831-42. ©2017 AACR.},
note = {Place: United States},
keywords = {Animal, Animals, Antineoplastic Agents/*chemical synthesis/*pharmacology, Apoptosis/drug effects, Biomarkers, Cell Cycle Checkpoints/drug effects, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1/*antagonists & inhibitors, Dealkylation/drug effects, Disease Models, Dose-Response Relationship, Drug, Drug resistance, Humans, Methylation, Mice, Molecular Structure, Neoplasm/*drug effects, Protein Kinase Inhibitors/*chemical synthesis/*pharmacology, Pyrazoles/pharmacology, Pyrimidines/pharmacology, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Vondráček, Jan
Strategies in genotoxicity testing. Journal Article
In: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, vol. 106, no. Pt B, pp. 573, 2017, ISSN: 1873-6351 0278-6915, (Place: England).
Links | BibTeX | Tags: Animals, Biomedical Research/education/methods, Carcinogenesis/chemically induced, Genotoxicity testing, Hazardous Substances/*toxicity, In silico prediction, In vivo relevance of in vitro geotoxicity tests, Interdisciplinary Communication, Mammalian in vitro genotoxicity tests, Mutagenicity Tests/*methods
@article{vondracek_strategies_2017,
title = {Strategies in genotoxicity testing.},
author = {Jan Vondráček},
doi = {10.1016/j.fct.2016.07.022},
issn = {1873-6351 0278-6915},
year = {2017},
date = {2017-08-01},
journal = {Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association},
volume = {106},
number = {Pt B},
pages = {573},
note = {Place: England},
keywords = {Animals, Biomedical Research/education/methods, Carcinogenesis/chemically induced, Genotoxicity testing, Hazardous Substances/*toxicity, In silico prediction, In vivo relevance of in vitro geotoxicity tests, Interdisciplinary Communication, Mammalian in vitro genotoxicity tests, Mutagenicity Tests/*methods},
pubstate = {published},
tppubtype = {article}
}
2016
Brenerová, Petra; Hamers, Timo; Kamstra, Jorke H.; Vondráček, Jan; Strapáčová, Simona; Andersson, Patrik L.; Machala, Miroslav
Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells. Journal Article
In: Environmental science and pollution research international, vol. 23, no. 3, pp. 2099–2107, 2016, ISSN: 1614-7499 0944-1344, (Place: Germany).
Abstract | Links | BibTeX | Tags: Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P450, Disruption of contact inhibition, DR-CALUX® assay, Epithelial Cells/cytology/drug effects/metabolism, Gene Expression/drug effects, Hepatocytes/cytology/drug effects/metabolism, Liver/*drug effects/metabolism, NDL-PCBs, Polychlorinated Biphenyls/*chemistry/*toxicity, Rats, Receptors, Relative effect potency, Signal Transduction/drug effects
@article{brenerova_pure_2016,
title = {Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells.},
author = {Petra Brenerová and Timo Hamers and Jorke H. Kamstra and Jan Vondráček and Simona Strapáčová and Patrik L. Andersson and Miroslav Machala},
doi = {10.1007/s11356-015-4819-6},
issn = {1614-7499 0944-1344},
year = {2016},
date = {2016-02-01},
journal = {Environmental science and pollution research international},
volume = {23},
number = {3},
pages = {2099–2107},
abstract = {The relative potencies of non-ortho-substituted coplanar polychlorinated biphenyl (PCB) congeners to activate the aryl hydrocarbon receptor (AhR) and to cause the AhR-dependent toxic events are essential for their risk assessment. Since some studies suggested that abundant non-dioxin-like PCB congeners (NDL-PCBs) may alter the AhR activation by PCB mixtures and possibly cause non-additive effects, we evaluated potential suppressive effects of NDL-PCBs on AhR activation, using a series of 24 highly purified NDL-PCBs. We investigated their impact on the model AhR agonist-induced luciferase reporter gene expression in rat hepatoma cells and on induction of CYP1A1/1B1 mRNAs and deregulation of AhR-dependent cell proliferation in rat liver epithelial cells. PCBs 128, 138, and 170 significantly suppressed AhR activation (with IC50 values from 1.4 to 5.6 μM), followed by PCBs 28, 47, 52, and 180; additionally, PCBs 122, 153, and 168 showed low but still significant potency to reduce luciferase activity. Detection of CYP1A1 mRNA levels in liver epithelial cells largely confirmed these results for the most abundant NDL-PCBs, whereas the other AhR-dependent events (CYP1B1 mRNA expression, induction of cell proliferation in confluent cells) were less sensitive to NDL-PCBs, thus indicating a more complex regulation of these endpoints. The present data suggest that some NDL-PCBs could modulate overall dioxin-like effects in complex mixtures.},
note = {Place: Germany},
keywords = {Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P450, Disruption of contact inhibition, DR-CALUX® assay, Epithelial Cells/cytology/drug effects/metabolism, Gene Expression/drug effects, Hepatocytes/cytology/drug effects/metabolism, Liver/*drug effects/metabolism, NDL-PCBs, Polychlorinated Biphenyls/*chemistry/*toxicity, Rats, Receptors, Relative effect potency, Signal Transduction/drug effects},
pubstate = {published},
tppubtype = {article}
}
Kremserova, Silvie; Perecko, Tomas; Soucek, Karel; Klinke, Anna; Baldus, Stephan; Eiserich, Jason P.; Kubala, Lukas
Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation. Journal Article
In: Oxidative medicine and cellular longevity, vol. 2016, pp. 5219056, 2016, ISSN: 1942-0994 1942-0900, (Place: United States).
Abstract | Links | BibTeX | Tags: Acute Disease, Acute Lung Injury/complications/genetics, Animals, Inborn Errors/*complications, Inbred C57BL, Knockout, Leukocyte Disorders/*complications/*genetics, Lipopolysaccharides, Male, metabolism, Mice, Neutrophils/*pathology, Peroxidase/deficiency/genetics, Pneumonia/chemically induced/*complications/genetics
@article{kremserova_lung_2016,
title = {Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation.},
author = {Silvie Kremserova and Tomas Perecko and Karel Soucek and Anna Klinke and Stephan Baldus and Jason P. Eiserich and Lukas Kubala},
doi = {10.1155/2016/5219056},
issn = {1942-0994 1942-0900},
year = {2016},
date = {2016-01-01},
journal = {Oxidative medicine and cellular longevity},
volume = {2016},
pages = {5219056},
abstract = {Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site.},
note = {Place: United States},
keywords = {Acute Disease, Acute Lung Injury/complications/genetics, Animals, Inborn Errors/*complications, Inbred C57BL, Knockout, Leukocyte Disorders/*complications/*genetics, Lipopolysaccharides, Male, metabolism, Mice, Neutrophils/*pathology, Peroxidase/deficiency/genetics, Pneumonia/chemically induced/*complications/genetics},
pubstate = {published},
tppubtype = {article}
}
2015
Slabáková, Eva; Kharaishvili, Gvantsa; Smějová, Monika; Pernicová, Zuzana; Suchánková, Tereza; Remšík, Ján; Lerch, Stanislav; Straková, Nicol; Bouchal, Jan; Král, Milan; Culig, Zoran; Kozubík, Alois; Souček, Karel
Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells. Journal Article
In: Oncotarget, vol. 6, no. 34, pp. 36156–36171, 2015, ISSN: 1949-2553, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Breast Neoplasms/genetics/*metabolism/pathology, Cell Cycle Proteins, Cell Line, Epithelial-Mesenchymal Transition, Epithelial-Mesenchymal Transition/*physiology, Female, Heterografts, Humans, Male, MDM2/MDMX, Mice, Nuclear Proteins/*biosynthesis, Nude, Phenotype, prostate/breast cancer, Prostatic Neoplasms/genetics/*metabolism/pathology, Proto-Oncogene Proteins c-mdm2/*biosynthesis, Proto-Oncogene Proteins/*biosynthesis, Snai2/Slug, Transfection, Tumor, TWIST
@article{slabakova_opposite_2015,
title = {Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells.},
author = {Eva Slabáková and Gvantsa Kharaishvili and Monika Smějová and Zuzana Pernicová and Tereza Suchánková and Ján Remšík and Stanislav Lerch and Nicol Straková and Jan Bouchal and Milan Král and Zoran Culig and Alois Kozubík and Karel Souček},
doi = {10.18632/oncotarget.5392},
issn = {1949-2553},
year = {2015},
date = {2015-11-01},
journal = {Oncotarget},
volume = {6},
number = {34},
pages = {36156–36171},
abstract = {Plasticity of cancer cells, manifested by transitions between epithelial and mesenchymal phenotypes, represents a challenging issue in the treatment of neoplasias. Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are implicated in the processes of metastasis formation and acquisition of stem cell-like properties. Mouse double minute (MDM) 2 and MDMX are important players in cancer progression, as they act as regulators of p53, but their function in EMT and metastasis may be contradictory. Here, we show that the EMT phenotype in multiple cellular models and in clinical prostate and breast cancer samples is associated with a decrease in MDM2 and increase in MDMX expression. Modulation of EMT-accompanying changes in MDM2 expression in benign and transformed prostate epithelial cells influences their migration capacity and sensitivity to docetaxel. Analysis of putative mechanisms of MDM2 expression control demonstrates that in the context of defective p53 function, MDM2 expression is regulated by EMT-inducing transcription factors Slug and Twist. These results provide an alternative context-specific role of MDM2 in EMT, cell migration, metastasis, and therapy resistance.},
note = {Place: United States},
keywords = {Animals, Breast Neoplasms/genetics/*metabolism/pathology, Cell Cycle Proteins, Cell Line, Epithelial-Mesenchymal Transition, Epithelial-Mesenchymal Transition/*physiology, Female, Heterografts, Humans, Male, MDM2/MDMX, Mice, Nuclear Proteins/*biosynthesis, Nude, Phenotype, prostate/breast cancer, Prostatic Neoplasms/genetics/*metabolism/pathology, Proto-Oncogene Proteins c-mdm2/*biosynthesis, Proto-Oncogene Proteins/*biosynthesis, Snai2/Slug, Transfection, Tumor, TWIST},
pubstate = {published},
tppubtype = {article}
}
Kratochvílová, Kateřina; Horak, Peter; Ešner, Milan; Souček, Karel; Pils, Dietmar; Anees, Mariam; Tomasich, Erwin; Dráfi, František; Jurtíková, Veronika; Hampl, Aleš; Krainer, Michael; Vaňhara, Petr
In: International journal of cancer, vol. 137, no. 6, pp. 1330–1340, 2015, ISSN: 1097-0215 0020-7136, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Cell Line, Endoplasmic Reticulum Stress, Endoplasmic Reticulum Stress/*genetics, Epithelial-Mesenchymal Transition/*genetics, epithelial-to-mesenchymal transition, Female, Genes, Heterografts, Humans, Inbred NOD, Membrane Proteins/*genetics, Mice, N33, ovarian cancer, Ovarian Neoplasms/*genetics, SCID, Tumor, Tumor Suppressor, Tumor Suppressor Proteins/*genetics, Tumor Suppressor/physiology, TUSC3
@article{kratochvilova_tumor_2015,
title = {Tumor suppressor candidate 3 (TUSC3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells.},
author = {Kateřina Kratochvílová and Peter Horak and Milan Ešner and Karel Souček and Dietmar Pils and Mariam Anees and Erwin Tomasich and František Dráfi and Veronika Jurtíková and Aleš Hampl and Michael Krainer and Petr Vaňhara},
doi = {10.1002/ijc.29502},
issn = {1097-0215 0020-7136},
year = {2015},
date = {2015-09-01},
journal = {International journal of cancer},
volume = {137},
number = {6},
pages = {1330–1340},
abstract = {Ovarian cancer is one of the most common malignancies in women and contributes greatly to cancer-related deaths. Tumor suppressor candidate 3 (TUSC3) is a putative tumor suppressor gene located at chromosomal region 8p22, which is often lost in epithelial cancers. Epigenetic silencing of TUSC3 has been associated with poor prognosis, and hypermethylation of its promoter provides an independent biomarker of overall and disease-free survival in ovarian cancer patients. TUSC3 is localized to the endoplasmic reticulum in an oligosaccharyl tranferase complex responsible for the N-glycosylation of proteins. However, the precise molecular role of TUSC3 in ovarian cancer remains unclear. In this study, we establish TUSC3 as a novel ovarian cancer tumor suppressor using a xenograft mouse model and demonstrate that loss of TUSC3 alters the molecular response to endoplasmic reticulum stress and induces hallmarks of the epithelial-to-mesenchymal transition in ovarian cancer cells. In summary, we have confirmed the tumor-suppressive function of TUSC3 and identified the possible mechanism driving TUSC3-deficient ovarian cancer cells toward a malignant phenotype.},
note = {Place: United States},
keywords = {Animals, Cell Line, Endoplasmic Reticulum Stress, Endoplasmic Reticulum Stress/*genetics, Epithelial-Mesenchymal Transition/*genetics, epithelial-to-mesenchymal transition, Female, Genes, Heterografts, Humans, Inbred NOD, Membrane Proteins/*genetics, Mice, N33, ovarian cancer, Ovarian Neoplasms/*genetics, SCID, Tumor, Tumor Suppressor, Tumor Suppressor Proteins/*genetics, Tumor Suppressor/physiology, TUSC3},
pubstate = {published},
tppubtype = {article}
}
Svobodová, Jana; Kabátková, Markéta; Šmerdová, Lenka; Brenerová, Petra; Dvořák, Zdeněk; Machala, Miroslav; Vondráček, Jan
In: Toxicology, vol. 333, pp. 37–44, 2015, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: AhR, Animals, Apoptosis, Apoptosis/*drug effects, Aryl Hydrocarbon/*agonists/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, BIRC5/survivin, Camptothecin/*toxicity, Caspase 3/metabolism, Cell Line, Contact inhibition, Contact Inhibition/*drug effects, Epithelial Cells/*drug effects/metabolism/pathology, Genetic/drug effects, Hippo signaling, Humans, Inbred F344, Inhibitor of Apoptosis Proteins/genetics/metabolism, Liver/*drug effects/metabolism/pathology, Microtubule-Associated Proteins/genetics/*metabolism, Poly (ADP-Ribose) Polymerase-1, Poly(ADP-ribose) Polymerases/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Rats, Receptors, RNA Interference, Signal Transduction/drug effects, Survivin, TCDD, Time Factors, Topoisomerase I Inhibitors/*toxicity, Transcription, Transfection, Up-Regulation
@article{svobodova_aryl_2015,
title = {The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis.},
author = {Jana Svobodová and Markéta Kabátková and Lenka Šmerdová and Petra Brenerová and Zdeněk Dvořák and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.tox.2015.04.001},
issn = {1879-3185 0300-483X},
year = {2015},
date = {2015-07-01},
journal = {Toxicology},
volume = {333},
pages = {37–44},
abstract = {Inhibition of apoptosis by the ligands of the aryl hydrocarbon receptor (AhR) has been proposed to play a role in their tumor promoting effects on liver parenchymal cells. However, little is presently known about the impact of toxic AhR ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on apoptosis in other liver cell types, such as in liver epithelial/progenitor cells. In the present study, we focused on the effects of TCDD on apoptosis regulation in a model of liver progenitor cells, rat WB-F344 cell line, during the TCDD-elicited release from contact inhibition. The stimulation of cell proliferation in this cell line was associated with deregulated expression of a number of genes known to be under transcriptional control of the Hippo signaling pathway, a principal regulatory pathway involved in contact inhibition of cell proliferation. Interestingly, we found that mRNA and protein levels of survivin, a known Hippo target, which plays a role both in cell division and inhibition of apoptosis, were significantly up-regulated in rat liver epithelial cell model, as well as in undifferentiated human liver HepaRG cells. Using the short interfering RNA-mediated knockdown, we confirmed that survivin plays a central role in cell division of WB-F344 cells. When evaluating the effects of TCDD on apoptosis induction by camptothecin, a genotoxic topoisomerase I inhibitor, we observed that the pre-treatment of WB-F344 cells with TCDD increased number of cells with apoptotic nuclear morphology, and it potentiated cleavage of both caspase-3 and poly(ADP-ribose) polymerase I. This indicated that despite the observed up-regulation of survivin, apoptosis induced by the genotoxin was potentiated in the model of rat liver progenitor cells. The present results indicate that, unlike in hepatocytes, AhR agonists may not prevent induction of apoptosis elicited by DNA-damaging agents in a model of rat liver progenitor cells.},
note = {Place: Ireland},
keywords = {AhR, Animals, Apoptosis, Apoptosis/*drug effects, Aryl Hydrocarbon/*agonists/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, BIRC5/survivin, Camptothecin/*toxicity, Caspase 3/metabolism, Cell Line, Contact inhibition, Contact Inhibition/*drug effects, Epithelial Cells/*drug effects/metabolism/pathology, Genetic/drug effects, Hippo signaling, Humans, Inbred F344, Inhibitor of Apoptosis Proteins/genetics/metabolism, Liver/*drug effects/metabolism/pathology, Microtubule-Associated Proteins/genetics/*metabolism, Poly (ADP-Ribose) Polymerase-1, Poly(ADP-ribose) Polymerases/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Rats, Receptors, RNA Interference, Signal Transduction/drug effects, Survivin, TCDD, Time Factors, Topoisomerase I Inhibitors/*toxicity, Transcription, Transfection, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
Nahta, Rita; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Andrade-Vieira, Rafaela; Bay, Sarah N.; Brown, Dustin G.; Calaf, Gloria M.; Castellino, Robert C.; Cohen-Solal, Karine A.; Colacci, Annamaria; Cruickshanks, Nichola; Dent, Paul; Fiore, Riccardo Di; Forte, Stefano; Goldberg, Gary S.; Hamid, Roslida A.; Krishnan, Harini; Laird, Dale W.; Lasfar, Ahmed; Marignani, Paola A.; Memeo, Lorenzo; Mondello, Chiara; Naus, Christian C.; Ponce-Cusi, Richard; Raju, Jayadev; Roy, Debasish; Roy, Rabindra; Ryan, Elizabeth P.; Salem, Hosni K.; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Vento, Renza; Vondráček, Jan; Wade, Mark; Woodrick, Jordan; Bisson, William H.
Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Journal Article
In: Carcinogenesis, vol. 36 Suppl 1, no. Suppl 1, pp. S2–18, 2015, ISSN: 1460-2180 0143-3334, (Place: England).
Abstract | Links | BibTeX | Tags: Animals, Environmental Exposure/*adverse effects, Hazardous Substances/*adverse effects, Humans, Neoplasms/*chemically induced/*etiology, Signal Transduction/drug effects
@article{nahta_mechanisms_2015,
title = {Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression.},
author = {Rita Nahta and Fahd Al-Mulla and Rabeah Al-Temaimi and Amedeo Amedei and Rafaela Andrade-Vieira and Sarah N. Bay and Dustin G. Brown and Gloria M. Calaf and Robert C. Castellino and Karine A. Cohen-Solal and Annamaria Colacci and Nichola Cruickshanks and Paul Dent and Riccardo Di Fiore and Stefano Forte and Gary S. Goldberg and Roslida A. Hamid and Harini Krishnan and Dale W. Laird and Ahmed Lasfar and Paola A. Marignani and Lorenzo Memeo and Chiara Mondello and Christian C. Naus and Richard Ponce-Cusi and Jayadev Raju and Debasish Roy and Rabindra Roy and Elizabeth P. Ryan and Hosni K. Salem and A. Ivana Scovassi and Neetu Singh and Monica Vaccari and Renza Vento and Jan Vondráček and Mark Wade and Jordan Woodrick and William H. Bisson},
doi = {10.1093/carcin/bgv028},
issn = {1460-2180 0143-3334},
year = {2015},
date = {2015-06-01},
journal = {Carcinogenesis},
volume = {36 Suppl 1},
number = {Suppl 1},
pages = {S2–18},
abstract = {As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.},
note = {Place: England},
keywords = {Animals, Environmental Exposure/*adverse effects, Hazardous Substances/*adverse effects, Humans, Neoplasms/*chemically induced/*etiology, Signal Transduction/drug effects},
pubstate = {published},
tppubtype = {article}
}
Larsson, Malin; Berg, Martin; Brenerová, Petra; Duursen, Majorie B. M.; Ede, Karin I.; Lohr, Christiane; Luecke-Johansson, Sandra; Machala, Miroslav; Neser, Sylke; Pěnčíková, Kateřina; Poellinger, Lorenz; Schrenk, Dieter; Strapáčová, Simona; Vondráček, Jan; Andersson, Patrik L.
In: Chemical research in toxicology, vol. 28, no. 4, pp. 641–650, 2015, ISSN: 1520-5010 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*physiology, Benzofurans/chemistry/*toxicity, Computer Simulation, Dibenzofurans, Humans, In Vitro Techniques, Polychlorinated, Polychlorinated Biphenyls/chemistry/*toxicity, Polychlorinated Dibenzodioxins/*analogs & derivatives/chemistry/toxicity, Quantitative Structure-Activity Relationship, Rats, Receptors, Rodentia
@article{larsson_consensus_2015,
title = {Consensus toxicity factors for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls combining in silico models and extensive in vitro screening of AhR-mediated effects in human and rodent cells.},
author = {Malin Larsson and Martin Berg and Petra Brenerová and Majorie B. M. Duursen and Karin I. Ede and Christiane Lohr and Sandra Luecke-Johansson and Miroslav Machala and Sylke Neser and Kateřina Pěnčíková and Lorenz Poellinger and Dieter Schrenk and Simona Strapáčová and Jan Vondráček and Patrik L. Andersson},
doi = {10.1021/tx500434j},
issn = {1520-5010 0893-228X},
year = {2015},
date = {2015-04-01},
journal = {Chemical research in toxicology},
volume = {28},
number = {4},
pages = {641–650},
abstract = {Consensus toxicity factors (CTFs) were developed as a novel approach to establish toxicity factors for risk assessment of dioxin-like compounds (DLCs). Eighteen polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs), and biphenyls (PCBs) with assigned World Health Organization toxic equivalency factors (WHO-TEFs) and two additional PCBs were screened in 17 human and rodent bioassays to assess their induction of aryl hydrocarbon receptor-related responses. For each bioassay and compound, relative effect potency values (REPs) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin were calculated and analyzed. The responses in the human and rodent cell bioassays generally differed. Most notably, the human cell models responded only weakly to PCBs, with 3,3',4,4',5-pentachlorobiphenyl (PCB126) being the only PCB that frequently evoked sufficiently strong responses in human cells to permit us to calculate REP values. Calculated REPs for PCB126 were more than 30 times lower than the WHO-TEF value for PCB126. CTFs were calculated using score and loading vectors from a principal component analysis to establish the ranking of the compounds and, by rescaling, also to provide numerical differences between the different congeners corresponding to the TEF scheme. The CTFs were based on rat and human bioassay data and indicated a significant deviation for PCBs but also for certain PCDD/Fs from the WHO-TEF values. The human CTFs for 2,3,4,7,8-pentachlorodibenzofuran, 1,2,3,4,7,8-hexachlorodibenzofuran, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, and 1,2,3,4,7,8,9-heptachlorodibenzofuran were up to 10 times greater than their WHO-TEF values. Quantitative structure-activity relationship models were used to predict CTFs for untested WHO-TEF compounds, suggesting that the WHO-TEF value for 1,2,3,7,8-pentachlorodibenzofuran could be underestimated by an order of magnitude for both human and rodent models. Our results indicate that the CTF approach provides a powerful tool for condensing data from batteries of screening tests using compounds with similar mechanisms of action, which can be used to improve risk assessment of DLCs.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon/*physiology, Benzofurans/chemistry/*toxicity, Computer Simulation, Dibenzofurans, Humans, In Vitro Techniques, Polychlorinated, Polychlorinated Biphenyls/chemistry/*toxicity, Polychlorinated Dibenzodioxins/*analogs & derivatives/chemistry/toxicity, Quantitative Structure-Activity Relationship, Rats, Receptors, Rodentia},
pubstate = {published},
tppubtype = {article}
}
Pálková, Lenka; Vondráček, Jan; Trilecová, Lenka; Ciganek, Miroslav; Pěnčíková, Kateřina; Neča, Jiří; Milcová, Alena; Topinka, Jan; Machala, Miroslav
In: Toxicology in vitro : an international journal published in association with BIBRA, vol. 29, no. 3, pp. 438–448, 2015, ISSN: 1879-3177 0887-2333, (Place: England).
Abstract | Links | BibTeX | Tags: Air Pollutants/*toxicity, Air pollution, Animals, Apoptosis, Apoptosis/drug effects, Aryl Hydrocarbon/*drug effects, Cell Cycle/drug effects, Cell Death/drug effects, Cell Proliferation, DNA adducts, DNA Damage, DNA damage response, Liver/*pathology, Lung/*pathology, Male, Mutagens/*toxicity, PAHs, Particulate Matter/*toxicity, Prostate/*pathology, Rats, Receptors, SRM 1650b, Vehicle Emissions/*toxicity
@article{palkova_aryl_2015,
title = {The aryl hydrocarbon receptor-mediated and genotoxic effects of fractionated extract of standard reference diesel exhaust particle material in pulmonary, liver and prostate cells.},
author = {Lenka Pálková and Jan Vondráček and Lenka Trilecová and Miroslav Ciganek and Kateřina Pěnčíková and Jiří Neča and Alena Milcová and Jan Topinka and Miroslav Machala},
doi = {10.1016/j.tiv.2014.12.002},
issn = {1879-3177 0887-2333},
year = {2015},
date = {2015-04-01},
journal = {Toxicology in vitro : an international journal published in association with BIBRA},
volume = {29},
number = {3},
pages = {438–448},
abstract = {Diesel exhaust particles (DEP) and the associated complex mixtures of organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), or their derivatives, have been suggested to exert deleterious effects on human health. We used a set of defined cellular models representing liver, lung and prostate tissues, in order to compare non-genotoxic and genotoxic effects of crude and fractionated extract of a standard reference DEP material - SRM 1650b. We focused on the aryl hydrocarbon receptor (AhR)-mediated activity, modulation of cell proliferation, formation of DNA adducts, oxidative DNA damage, and induction of DNA damage responses, including evaluation of apoptosis, and phosphorylation of p53 tumor suppressor and checkpoint kinases (Chk). Both PAHs and the polar aromatic compounds contributed to the AhR-mediated activity of DEP-associated organic pollutants. The principal identified AhR agonists included benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene, chrysene and several non-priority PAHs, including benzochrysenes and methylated PAHs. In contrast to PAHs, polar compounds contributed more significantly to overall formation of DNA adducts associated with phosphorylation of p53, Chk1 or Chk2, and partly with apoptosis. Therefore, more attention should be paid to identification of DEP-associated polar organic compounds, contributing to the AhR activation and cytotoxic/genotoxic effects of complex airborne mixtures of organic contaminants produced by diesel engines.},
note = {Place: England},
keywords = {Air Pollutants/*toxicity, Air pollution, Animals, Apoptosis, Apoptosis/drug effects, Aryl Hydrocarbon/*drug effects, Cell Cycle/drug effects, Cell Death/drug effects, Cell Proliferation, DNA adducts, DNA Damage, DNA damage response, Liver/*pathology, Lung/*pathology, Male, Mutagens/*toxicity, PAHs, Particulate Matter/*toxicity, Prostate/*pathology, Rats, Receptors, SRM 1650b, Vehicle Emissions/*toxicity},
pubstate = {published},
tppubtype = {article}
}
Kabátková, Markéta; Svobodová, Jana; Pěnčíková, Kateřina; Mohatad, Dilshad Shaik; Šmerdová, Lenka; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Toxicology letters, vol. 232, no. 1, pp. 113–121, 2015, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/genetics/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/genetics/metabolism, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects, Cell Transformation, Connexin 43/genetics/metabolism, Dose-Response Relationship, Drug, Enzyme Activation, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/*toxicity, Gap junctions, Gap Junctions/*drug effects/metabolism/pathology, Gene Expression Regulation/drug effects, Genetic/*drug effects, Inflammation, Inflammation/chemically induced/genetics/metabolism/pathology, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Molecular Weight, Neoplastic/chemically induced/metabolism/pathology, p38 Mitogen-Activated Protein Kinases/metabolism, PAHs, Rats, Receptors, Signal Transduction/drug effects, Time Factors, Transcription, Tumor Necrosis Factor-alpha/*toxicity
@article{kabatkova_interactive_2015,
title = {Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription.},
author = {Markéta Kabátková and Jana Svobodová and Kateřina Pěnčíková and Dilshad Shaik Mohatad and Lenka Šmerdová and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.toxlet.2014.09.023},
issn = {1879-3169 0378-4274},
year = {2015},
date = {2015-01-01},
journal = {Toxicology letters},
volume = {232},
number = {1},
pages = {113–121},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) with lower molecular weight exhibit lesser genotoxicity and carcinogenicity than highly carcinogenic PAHs with a higher number of benzene rings. Nevertheless, they elicit specific effects linked with tumor promotion, such as acute inhibition of gap junctional intercellular communication (GJIC). Although inflammatory reaction may alter bioactivation and toxicity of carcinogenic PAHs, little is known about the impact of pro-inflammatory cytokines on toxic effects of the low-molecular-weight PAHs. Here, we investigated the impact of a pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), on the effects associated with tumor promotion and with induction of the aryl hydrocarbon receptor (AhR)-dependent gene expression in rat liver epithelial cells. We found that a prolonged incubation with TNF-α induced a down-regulation of GJIC, associated with reduced expression of connexin 43 (Cx43), a major connexin isoform found in liver epithelial cells. The Cx43 down-regulation was partly mediated by the activity of the mitogen-activated protein (MAP) p38 kinase. Independently of GJIC modulation, or p38 activation, TNF-α potentiated the AhR-dependent proliferative effect of a model low-molecular-weight PAH, fluoranthene, on contact-inhibited cells. In contrast, this pro-inflammatory cytokine repressed the fluoranthene-induced expression of a majority of model AhR gene targets, such as Cyp1a1, Ahrr or Tiparp. The results of the present study indicate that inflammatory reaction may differentially modulate various toxic effects of low-molecular-weight PAHs; the exposure to pro-inflammatory cytokines may both strengthen (inhibition of GJIC, disruption of contact inhibition) and repress (expression of a majority of AhR-dependent genes) their impact on toxic endpoints associated with carcinogenesis.},
note = {Place: Netherlands},
keywords = {Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/genetics/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/genetics/metabolism, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects, Cell Transformation, Connexin 43/genetics/metabolism, Dose-Response Relationship, Drug, Enzyme Activation, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/*toxicity, Gap junctions, Gap Junctions/*drug effects/metabolism/pathology, Gene Expression Regulation/drug effects, Genetic/*drug effects, Inflammation, Inflammation/chemically induced/genetics/metabolism/pathology, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Molecular Weight, Neoplastic/chemically induced/metabolism/pathology, p38 Mitogen-Activated Protein Kinases/metabolism, PAHs, Rats, Receptors, Signal Transduction/drug effects, Time Factors, Transcription, Tumor Necrosis Factor-alpha/*toxicity},
pubstate = {published},
tppubtype = {article}
}
2014
Smerdová, Lenka; Šmerdová, Jana; Kabátková, Markéta; Kohoutek, Jiří; Blažek, Dalibor; Machala, Miroslav; Vondráček, Jan
Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway. Journal Article
In: Carcinogenesis, vol. 35, no. 11, pp. 2534–2543, 2014, ISSN: 1460-2180 0143-3334, (Place: England).
Abstract | Links | BibTeX | Tags: Animals, Carcinogenesis/drug effects/*genetics, Carcinogens/toxicity, Cyclin-Dependent Kinase 9/genetics, Cytochrome P-450 CYP1B1/*biosynthesis/genetics, Cytokines/metabolism, Gene Expression Regulation, Humans, Mice, Neoplasms/chemically induced/*genetics/pathology, Neoplastic/drug effects, p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/*genetics/metabolism, Positive Transcriptional Elongation Factor B/genetics, RNA Polymerase II/genetics, Signal Transduction/drug effects, Tumor Necrosis Factor-alpha/metabolism
@article{smerdova_upregulation_2014,
title = {Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway.},
author = {Lenka Smerdová and Jana Šmerdová and Markéta Kabátková and Jiří Kohoutek and Dalibor Blažek and Miroslav Machala and Jan Vondráček},
doi = {10.1093/carcin/bgu190},
issn = {1460-2180 0143-3334},
year = {2014},
date = {2014-11-01},
journal = {Carcinogenesis},
volume = {35},
number = {11},
pages = {2534–2543},
abstract = {Cytochrome P450 1B1 (CYP1B1) is an enzyme that has a unique tumor-specific pattern of expression and is capable of bioactivating a wide range of carcinogenic compounds. We have reported previously that coordinated upregulation of CYP1B1 by inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and the aryl hydrocarbon receptor ligands, may increase bioactivation of promutagens, such as benzo[a]pyrene (BaP) in epithelial cells. Here, we extend those studies by describing a novel mechanism participating in the regulation of CYP1B1 expression, which involves activation of the p38 mitogen-activated protein kinase (p38) and mitogen- and stress-activated protein kinase 1 (MSK1). Using inhibitors of p38 and MSKs, as well as mouse embryonic cells derived from p38α-deficient and MSK1/2 double knockout mice, we show here that TNF-α potentiates CYP1B1 upregulation via the p38/MSK1 kinase cascade. Effects of this inflammatory cytokine on CYP1B1 expression further involve the positive transcription elongation factor b (P-TEFb). The inhibition of the P-TEFb subunit, cyclin-dependent kinase 9 (CDK9), which phosphorylates RNA polymerase II (RNAPII), prevented the enhanced CYP1B1 induction by a combination of BaP and inflammatory cytokine. Furthermore, using chromatin immunoprecipitation assays, we found that cotreatment of epithelial cells with TNF-α and BaP resulted in enhanced recruitment of both CDK9 and RNAPII to the Cyp1b1 gene promoter. Overall, these results have implications concerning the contribution of inflammatory factors to carcinogenesis, since enhanced CYP1B1 induction during inflammation may alter metabolism of exogenous carcinogens, as well as endogenous CYP1B1 substrates playing role in tumor development.},
note = {Place: England},
keywords = {Animals, Carcinogenesis/drug effects/*genetics, Carcinogens/toxicity, Cyclin-Dependent Kinase 9/genetics, Cytochrome P-450 CYP1B1/*biosynthesis/genetics, Cytokines/metabolism, Gene Expression Regulation, Humans, Mice, Neoplasms/chemically induced/*genetics/pathology, Neoplastic/drug effects, p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/*genetics/metabolism, Positive Transcriptional Elongation Factor B/genetics, RNA Polymerase II/genetics, Signal Transduction/drug effects, Tumor Necrosis Factor-alpha/metabolism},
pubstate = {published},
tppubtype = {article}
}
Ghorbanzadeh, Mehdi; Ede, Karin I.; Larsson, Malin; Duursen, Majorie B. M.; Poellinger, Lorenz; Lücke-Johansson, Sandra; Machala, Miroslav; Pěnčíková, Kateřina; Vondráček, Jan; Berg, Martin; Denison, Michael S.; Ringsted, Tine; Andersson, Patrik L.
In: Chemical research in toxicology, vol. 27, no. 7, pp. 1120–1132, 2014, ISSN: 1520-5010 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/agonists/*metabolism, Benzofurans/*pharmacology, Biological, Biological Assay, Cell Line, Computer Simulation, Dibenzofurans, Dose-Response Relationship, Drug, Guinea Pigs, Luciferases/metabolism, Mice, Models, Polychlorinated, Polychlorinated Biphenyls/*pharmacology, Polychlorinated Dibenzodioxins/*analogs & derivatives/pharmacology, Quantitative Structure-Activity Relationship, Rats, Receptors, Tumor
@article{ghorbanzadeh_vitro_2014,
title = {In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines.},
author = {Mehdi Ghorbanzadeh and Karin I. Ede and Malin Larsson and Majorie B. M. Duursen and Lorenz Poellinger and Sandra Lücke-Johansson and Miroslav Machala and Kateřina Pěnčíková and Jan Vondráček and Martin Berg and Michael S. Denison and Tine Ringsted and Patrik L. Andersson},
doi = {10.1021/tx5001255},
issn = {1520-5010 0893-228X},
year = {2014},
date = {2014-07-01},
journal = {Chemical research in toxicology},
volume = {27},
number = {7},
pages = {1120–1132},
abstract = {For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congeners tested in the rodent cell lines were partial agonists and less efficacious than 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For this reason, REPs were calculated for each congener using concentrations at which 20% of the maximal TCDD response was reached (REP20TCDD). REP20TCDD values obtained for PCDD/Fs were comparable with their toxic equivalency factors assigned by the World Health Organization (WHO-TEF), while those for PCBs were in general lower than the WHO-TEF values. Moreover, the guinea pig cell line was the most sensitive as indicated by the 20% effect concentrations of TCDD of 1.5, 5.6, and 11.0 pM for guinea pig, rat, and mouse cells, respectively. A similar response pattern was observed using multivariate statistical analysis between the three CALUX assays and the WHO-TEFs. The mouse assay showed minor deviation due to higher relative induction potential for 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,6,7,8-hexachlorodibenzofuran and lower for 1,2,3,4,6,7,8-heptachlorodibenzofuran and 3,3',4,4',5-pentachlorobiphenyl (PCB126). 2,3,7,8-Tetrachlorodibenzofuran was more than two times more potent in the mouse assay as compared with that of rat and guinea pig cells, while measured REP20TCDD for PCB126 was lower in mouse cells (0.05) as compared with that of the guinea pig (0.2) and rat (0.07). In order to provide REP20TCDD values for all WHO-TEF assigned compounds, quantitative structure-activity relationship (QSAR) models were developed. The QSAR models showed that specific electronic properties and molecular surface characteristics play important roles in the AhR-mediated response. In silico derived REP20TCDD values were generally consistent with the WHO-TEFs with a few exceptions. The QSAR models indicated that, e.g., 1,2,3,7,8-pentachlorodibenzofuran and 1,2,3,7,8,9-hexachlorodibenzofuran were more potent than given by their assigned WHO-TEF values, and the non-ortho PCB 81 was predicted, based on the guinea-pig model, to be 1 order of magnitude above its WHO-TEF value. By combining in vitro and in silico approaches, REPs were established for all WHO-TEF assigned compounds (except OCDD), which will provide future guidance in testing AhR-mediated responses of DLCs and to increase our understanding of species variation in AhR-mediated effects.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon/agonists/*metabolism, Benzofurans/*pharmacology, Biological, Biological Assay, Cell Line, Computer Simulation, Dibenzofurans, Dose-Response Relationship, Drug, Guinea Pigs, Luciferases/metabolism, Mice, Models, Polychlorinated, Polychlorinated Biphenyls/*pharmacology, Polychlorinated Dibenzodioxins/*analogs & derivatives/pharmacology, Quantitative Structure-Activity Relationship, Rats, Receptors, Tumor},
pubstate = {published},
tppubtype = {article}
}
Jiřík, Radovan; Souček, Karel; Mézl, Martin; Bartoš, Michal; Dražanová, Eva; Dráfi, František; Grossová, Lucie; Kratochvíla, Jiří; Macíček, Ondřej; Nylund, Kim; Hampl, Aleš; Gilja, Odd Helge; Taxt, Torfinn; Starčuk, Zenon Jr
Blind deconvolution in dynamic contrast-enhanced MRI and ultrasound. Journal Article
In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol. 2014, pp. 4276–4279, 2014, ISSN: 2694-0604 2375-7477, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Cell Line, Contrast Media/*pharmacokinetics, Experimental/diagnostic imaging/metabolism, Gadolinium DTPA/*pharmacokinetics, Humans, Inbred BALB C, Magnetic Resonance Imaging/methods, Mice, Neoplasm Transplantation, Neoplasms, Tissue Distribution, Tumor, Ultrasonography
@article{jirik_blind_2014,
title = {Blind deconvolution in dynamic contrast-enhanced MRI and ultrasound.},
author = {Radovan Jiřík and Karel Souček and Martin Mézl and Michal Bartoš and Eva Dražanová and František Dráfi and Lucie Grossová and Jiří Kratochvíla and Ondřej Macíček and Kim Nylund and Aleš Hampl and Odd Helge Gilja and Torfinn Taxt and Zenon Jr Starčuk},
doi = {10.1109/EMBC.2014.6944569},
issn = {2694-0604 2375-7477},
year = {2014},
date = {2014-01-01},
journal = {Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference},
volume = {2014},
pages = {4276–4279},
abstract = {This paper is focused on quantitative perfusion analysis using MRI and ultrasound. In both MRI and ultrasound, most approaches allow estimation of rate constants (Ktrans, kep for MRI) and indices (AUC, TTP) that are only related to the physiological perfusion parameters of a tissue (e.g. blood flow, vessel permeability) but do not allow their absolute quantification. Recent methods for quantification of these physiological perfusion parameters are shortly reviewed. The main problem of these methods is estimation of the arterial input function (AIF). This paper summarizes and extends the current blind-deconvolution approaches to AIF estimation. The feasibility of these methods is shown on a small preclinical study using both MRI and ultrasound.},
note = {Place: United States},
keywords = {Animals, Cell Line, Contrast Media/*pharmacokinetics, Experimental/diagnostic imaging/metabolism, Gadolinium DTPA/*pharmacokinetics, Humans, Inbred BALB C, Magnetic Resonance Imaging/methods, Mice, Neoplasm Transplantation, Neoplasms, Tissue Distribution, Tumor, Ultrasonography},
pubstate = {published},
tppubtype = {article}
}
2013
Smerdová, Lenka; Neča, Jiří; Svobodová, Jana; Topinka, Jan; Schmuczerová, Jana; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Toxicology, vol. 314, no. 1, pp. 30–38, 2013, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon Hydroxylases/*biosynthesis/genetics, ATP Binding Cassette Transporter, Benzo(a)pyrene/*metabolism, Blotting, Cell Line, Conditioned, Culture Media, CYP1B1, Cytochrome P-450 CYP1B1, Cytokines/metabolism, DNA adducts, Inflammation, Inflammation Mediators/*pharmacology, metabolism, Oxidoreductases Acting on Aldehyde or Oxo Group Donors/biosynthesis/genetics, Polycyclic aromatic hydrocarbons, Pulmonary Alveoli/cytology/drug effects/*metabolism, Rats, Real-Time Polymerase Chain Reaction, RNA, Small Interfering, Subfamily B/biosynthesis/genetics, Tandem Mass Spectrometry, Transfection, Western
@article{smerdova_inflammatory_2013,
title = {Inflammatory mediators accelerate metabolism of benzo[a]pyrene in rat alveolar type II cells: the role of enhanced cytochrome P450 1B1 expression.},
author = {Lenka Smerdová and Jiří Neča and Jana Svobodová and Jan Topinka and Jana Schmuczerová and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.tox.2013.09.001},
issn = {1879-3185 0300-483X},
year = {2013},
date = {2013-12-01},
journal = {Toxicology},
volume = {314},
number = {1},
pages = {30–38},
abstract = {Long-term deregulated inflammation represents one of the key factors contributing to lung cancer etiology. Previously, we have observed that tumor necrosis factor-α (TNF-α), a major pro-inflammatory cytokine, enhances genotoxicity of benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon, in rat lung epithelial RLE-6TN cells, a model of alveolar type II cells. Therefore, we analyzed B[a]P metabolism in RLE-6TN cells under inflammatory conditions, simulated using either recombinant TNF-α, or a mixture of inflammatory mediators derived from activated alveolar macrophage cell line. Inflammatory conditions significantly accelerated BaP metabolism, as evidenced by decreased levels of both parent B[a]P and its metabolites. TNF-α altered production of the metabolites associated with dihydrodiol-epoxide and radical cation pathways of B[a]P metabolism, especially B[a]P-dihydrodiols, and B[a]P-diones. We then evaluated the role of cytochrome P450 1B1 (CYP1B1), which is strongly up-regulated in cells treated with B[a]P under inflammatory conditions, in the observed effects. The siRNA-mediated CYP1B1 knock-down increased levels of B[a]P and reduced formation of stable DNA adducts, thus confirming the essential role of CYP1B1 in B[a]P metabolism under inflammatory conditions. TNF-α also reduced expression of aldo-keto reductase 1C14, which may compete with CYP1B1 for B[a]P-7,8-dihydrodiol and divert it from the formation of ultimate B[a]P dihydrodiol epoxide. Together, the present data suggests that the CYP1B1-catalyzed metabolism of polycyclic aromatic hydrocarbons might contribute to their enhanced bioactivation and genotoxic effects under inflammatory conditions.},
note = {Place: Ireland},
keywords = {Animals, Aryl Hydrocarbon Hydroxylases/*biosynthesis/genetics, ATP Binding Cassette Transporter, Benzo(a)pyrene/*metabolism, Blotting, Cell Line, Conditioned, Culture Media, CYP1B1, Cytochrome P-450 CYP1B1, Cytokines/metabolism, DNA adducts, Inflammation, Inflammation Mediators/*pharmacology, metabolism, Oxidoreductases Acting on Aldehyde or Oxo Group Donors/biosynthesis/genetics, Polycyclic aromatic hydrocarbons, Pulmonary Alveoli/cytology/drug effects/*metabolism, Rats, Real-Time Polymerase Chain Reaction, RNA, Small Interfering, Subfamily B/biosynthesis/genetics, Tandem Mass Spectrometry, Transfection, Western},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jiřina; Kabátková, Markéta; Šmerdová, Lenka; Pacherník, Jiří; Sykorová, Dominika; Kohoutek, Jiří; Šimečková, Pavlína; Hrubá, Eva; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
Aryl hydrocarbon receptor negatively regulates expression of the plakoglobin gene (jup). Journal Article
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 134, no. 2, pp. 258–270, 2013, ISSN: 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*physiology, Base Sequence, cardiomyocytes., Cell Adhesion, Cell Line, Cell Proliferation, Cloning, desmosomes, dioxin, DNA Primers, Down-Regulation, gamma Catenin/*genetics, Gene Expression Regulation/*physiology, Genetic, Inbred F344, liver progenitor cells, Molecular, plakoglobin, Polychlorinated Dibenzodioxins/pharmacology, Promoter Regions, Rats, Real-Time Polymerase Chain Reaction, Receptors
@article{prochazkova_aryl_2013,
title = {Aryl hydrocarbon receptor negatively regulates expression of the plakoglobin gene (jup).},
author = {Jiřina Procházková and Markéta Kabátková and Lenka Šmerdová and Jiří Pacherník and Dominika Sykorová and Jiří Kohoutek and Pavlína Šimečková and Eva Hrubá and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1093/toxsci/kft110},
issn = {1096-0929},
year = {2013},
date = {2013-08-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {134},
number = {2},
pages = {258–270},
abstract = {Plakoglobin is an important component of intercellular junctions, including both desmosomes and adherens junctions, which is known as a tumor suppressor. Although mutations in the plakoglobin gene (Jup) and/or changes in its protein levels have been observed in various disease states, including cancer progression or cardiovascular defects, the information about endogenous or exogenous stimuli orchestrating Jup expression is limited. Here we show that the aryl hydrocarbon receptor (AhR) may regulate Jup expression in a cell-specific manner. We observed a significant suppressive effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model toxic exogenous activator of the AhR signaling, on Jup expression in a variety of experimental models derived from rodent tissues, including contact-inhibited rat liver progenitor cells (where TCDD induces cell proliferation), rat and mouse hepatoma cell models (where TCDD inhibits cell cycle progression), cardiac cells derived from the mouse embryonic stem cells, or cardiomyocytes isolated from neonatal rat hearts. The small interfering RNA (siRNA)-mediated knockdown of AhR confirmed its role in both basal and TCDD-deregulated Jup expression. The analysis of genomic DNA located textasciitilde2.5kb upstream of rat Jup gene revealed a presence of evolutionarily conserved AhR binding motifs, which were confirmed upon their cloning into luciferase reporter construct. The siRNA-mediated knockdown of Jup expression affected both proliferation and attachment of liver progenitor cells. The present data indicate that the AhR may contribute to negative regulation of Jup gene expression in rodent cellular models, which may affect cell adherence and proliferation.},
note = {Place: United States},
keywords = {Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*physiology, Base Sequence, cardiomyocytes., Cell Adhesion, Cell Line, Cell Proliferation, Cloning, desmosomes, dioxin, DNA Primers, Down-Regulation, gamma Catenin/*genetics, Gene Expression Regulation/*physiology, Genetic, Inbred F344, liver progenitor cells, Molecular, plakoglobin, Polychlorinated Dibenzodioxins/pharmacology, Promoter Regions, Rats, Real-Time Polymerase Chain Reaction, Receptors},
pubstate = {published},
tppubtype = {article}
}
Faust, Dagmar; Vondráček, Jan; Krčmář, Pavel; Smerdová, Lenka; Procházková, Jiřina; Hrubá, Eva; Hulinková, Petra; Kaina, Bernd; Dietrich, Cornelia; Machala, Miroslav
AhR-mediated changes in global gene expression in rat liver progenitor cells. Journal Article
In: Archives of toxicology, vol. 87, no. 4, pp. 681–698, 2013, ISSN: 1432-0738 0340-5761, (Place: Germany).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*genetics/metabolism, Cell Line, Epithelial Cells/drug effects/*metabolism/pathology, Estrogen Antagonists/toxicity, Gene Expression Regulation/drug effects/*genetics, Gene Knockdown Techniques, Liver/drug effects/*metabolism/pathology, Oligonucleotide Array Sequence Analysis, Polychlorinated Biphenyls/toxicity, Rats, Receptors, Stem Cells/drug effects/*metabolism/pathology
@article{faust_ahr-mediated_2013,
title = {AhR-mediated changes in global gene expression in rat liver progenitor cells.},
author = {Dagmar Faust and Jan Vondráček and Pavel Krčmář and Lenka Smerdová and Jiřina Procházková and Eva Hrubá and Petra Hulinková and Bernd Kaina and Cornelia Dietrich and Miroslav Machala},
doi = {10.1007/s00204-012-0979-z},
issn = {1432-0738 0340-5761},
year = {2013},
date = {2013-04-01},
journal = {Archives of toxicology},
volume = {87},
number = {4},
pages = {681–698},
abstract = {Although the tumor-promoting effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), coplanar polychlorinated biphenyls (PCBs), and related compounds in liver tissue are primarily attributed to the activation of the aryl hydrocarbon receptor (AhR), the underlying molecular mechanisms are still unclear. Liver progenitor (oval) cells have been suggested to constitute a potential target for hepatocarcinogenic chemicals. To better understand AhR-driven pathways, we analyzed the transcriptional program in response to coplanar PCB 126 in contact-inhibited rat liver progenitor WB-F344 cells using high-density microarrays. After 6-h treatment, we identified 145 significantly deregulated genes considered to be direct AhR-dependent target genes. The number of differentially regulated genes increased to 658 and 968 genes after 24 and 72 h, respectively. Gene ontology analysis revealed that these genes were primarily involved in drug and lipid metabolism, cell cycle and growth control, cancer developmental processes, cell-cell communication, and adhesion. Interestingly, the Wnt and TGF-β signaling pathways, both being involved in developmental and tumorigenic processes, belonged to the most affected pathways. AhR- and ARNT-dependent regulation of selected target genes of interest was then confirmed using TCDD as a model AhR agonist, together with pharmacological inhibition of the AhR and by RNA-interference techniques. We demonstrated AhR-dependent regulation of emerging and novel AhR target genes, such as Fst, Areg, Hbegf, Ctgf, Btg2, and Foxq1. Among them, the transcription factor Foxq1, recently suggested to contribute to tumor promotion and/or progression, was found to be regulated at both mRNA and protein levels by AhR/ARNT activation.},
note = {Place: Germany},
keywords = {Animals, Aryl Hydrocarbon/*genetics/metabolism, Cell Line, Epithelial Cells/drug effects/*metabolism/pathology, Estrogen Antagonists/toxicity, Gene Expression Regulation/drug effects/*genetics, Gene Knockdown Techniques, Liver/drug effects/*metabolism/pathology, Oligonucleotide Array Sequence Analysis, Polychlorinated Biphenyls/toxicity, Rats, Receptors, Stem Cells/drug effects/*metabolism/pathology},
pubstate = {published},
tppubtype = {article}
}
Andrysík, Zdeněk; Procházková, Jiřina; Kabátková, Markéta; Umannová, Lenka; Simečková, Pavlína; Kohoutek, Jiří; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Archives of toxicology, vol. 87, no. 3, pp. 491–503, 2013, ISSN: 1432-0738 0340-5761, (Place: Germany).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*agonists/genetics/metabolism, Benz(a)Anthracenes/toxicity, Carcinogens/*toxicity, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Transformation, Connexin 43/genetics/*metabolism, Contact Inhibition/*drug effects, Dose-Response Relationship, Down-Regulation, Drug, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/toxicity, Gap Junctions/*drug effects/metabolism/pathology, Gene Knockdown Techniques, Indoles/pharmacology, Ligands, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Neoplastic/chemically induced/metabolism/pathology, Phloroglucinol/analogs & derivatives/pharmacology, Phosphorylation, Polychlorinated Dibenzodioxins/toxicity, Proteasome Endopeptidase Complex/metabolism, Rats, Receptors, RNA Interference, Signal Transduction/*drug effects, Time Factors, Transfection
@article{andrysik_aryl_2013,
title = {Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication.},
author = {Zdeněk Andrysík and Jiřina Procházková and Markéta Kabátková and Lenka Umannová and Pavlína Simečková and Jiří Kohoutek and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1007/s00204-012-0963-7},
issn = {1432-0738 0340-5761},
year = {2013},
date = {2013-03-01},
journal = {Archives of toxicology},
volume = {87},
number = {3},
pages = {491–503},
abstract = {The aryl hydrocarbon receptor (AhR) contributes to the control of cell-to-cell communication, cell adhesion, migration or proliferation. In the present study, we investigated the regulation of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) during the AhR-dependent disruption of contact inhibition in non-tumorigenic liver epithelial cells. The contact inhibition of cell proliferation is a process restricting the cell division of confluent non-transformed cells, which is frequently abolished in cancer cells; however, the mechanisms contributing to its disruption are still only partially understood. Disruption of contact inhibition, which was induced by toxic AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or polycyclic aromatic hydrocarbons in epithelial WB-F344 cells, reduced Cx43 protein levels, possibly via enhanced proteasomal degradation, significantly decreased the amount of gap junction plaques and downregulated GJIC, in an AhR-dependent manner. Although both intracellular and membrane Cx43 pools were markedly reduced in cells released from contact inhibition by TCDD, siRNA-mediated Cx43 knock-down was not sufficient to stimulate proliferation in contact-inhibited cells. Our data suggest that downregulation of Cx43/GJIC in non-transformed epithelial cells is an inherent part of disruption of contact inhibition, which occurs at the post-transcriptional level. This process runs in parallel with alterations of other forms of cell-to-cell communication, thus suggesting that toxic AhR agonists may simultaneously abrogate contact inhibition and reduce GJIC, two essential mechanisms linked to deregulation of cell-to-cell communication during tumor promotion and progression.},
note = {Place: Germany},
keywords = {Animals, Aryl Hydrocarbon/*agonists/genetics/metabolism, Benz(a)Anthracenes/toxicity, Carcinogens/*toxicity, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Transformation, Connexin 43/genetics/*metabolism, Contact Inhibition/*drug effects, Dose-Response Relationship, Down-Regulation, Drug, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/toxicity, Gap Junctions/*drug effects/metabolism/pathology, Gene Knockdown Techniques, Indoles/pharmacology, Ligands, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Neoplastic/chemically induced/metabolism/pathology, Phloroglucinol/analogs & derivatives/pharmacology, Phosphorylation, Polychlorinated Dibenzodioxins/toxicity, Proteasome Endopeptidase Complex/metabolism, Rats, Receptors, RNA Interference, Signal Transduction/*drug effects, Time Factors, Transfection},
pubstate = {published},
tppubtype = {article}
}
2012
Knopfová, Lucia; Beneš, Petr; Pekarčíková, Lucie; Hermanová, Markéta; Masařík, Michal; Pernicová, Zuzana; Souček, Karel; Smarda, Jan
c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Journal Article
In: Molecular cancer, vol. 11, pp. 15, 2012, ISSN: 1476-4598, (Place: England).
Abstract | Links | BibTeX | Tags: Animals, Breast Neoplasms/genetics/*metabolism, Cathepsin D/genetics/*metabolism, Cell Line, Cell Movement/genetics/physiology, Electrophoresis, Female, Humans, Immunoblotting, Inbred BALB C, Matrix Metalloproteinase 1/genetics/*metabolism, Matrix Metalloproteinase 9/genetics/*metabolism, Mice, Neoplasm Metastasis/genetics/physiopathology, Polyacrylamide Gel, Proto-Oncogene Proteins c-myb/genetics/*metabolism, Real-Time Polymerase Chain Reaction, RNA, Small Interfering, Tumor
@article{knopfova_c-myb_2012,
title = {c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis.},
author = {Lucia Knopfová and Petr Beneš and Lucie Pekarčíková and Markéta Hermanová and Michal Masařík and Zuzana Pernicová and Karel Souček and Jan Smarda},
doi = {10.1186/1476-4598-11-15},
issn = {1476-4598},
year = {2012},
date = {2012-03-01},
journal = {Molecular cancer},
volume = {11},
pages = {15},
abstract = {BACKGROUND: The c-Myb transcription factor is essential for the maintenance of stem-progenitor cells in bone marrow, colon epithelia, and neurogenic niches. c-Myb malfunction contributes to several types of malignancies including breast cancer. However, the function of c-Myb in the metastatic spread of breast tumors remains unexplored. In this study, we report a novel role of c-Myb in the control of specific proteases that regulate the matrix-dependent invasion of breast cancer cells. RESULTS: Ectopically expressed c-Myb enhanced migration and ability of human MDA-MB-231 and mouse 4T1 mammary cancer cells to invade Matrigel but not the collagen I matrix in vitro. c-Myb strongly increased the expression/activity of cathepsin D and matrix metalloproteinase (MMP) 9 and significantly downregulated MMP1. The gene coding for cathepsin D was suggested as the c-Myb-responsive gene and downstream effector of the migration-promoting function of c-Myb. Finally, we demonstrated that c-Myb delayed the growth of mammary tumors in BALB/c mice and affected the metastatic potential of breast cancer cells in an organ-specific manner. CONCLUSIONS: This study identified c-Myb as a matrix-dependent regulator of invasive behavior of breast cancer cells.},
note = {Place: England},
keywords = {Animals, Breast Neoplasms/genetics/*metabolism, Cathepsin D/genetics/*metabolism, Cell Line, Cell Movement/genetics/physiology, Electrophoresis, Female, Humans, Immunoblotting, Inbred BALB C, Matrix Metalloproteinase 1/genetics/*metabolism, Matrix Metalloproteinase 9/genetics/*metabolism, Mice, Neoplasm Metastasis/genetics/physiopathology, Polyacrylamide Gel, Proto-Oncogene Proteins c-myb/genetics/*metabolism, Real-Time Polymerase Chain Reaction, RNA, Small Interfering, Tumor},
pubstate = {published},
tppubtype = {article}
}
2011
Umannová, Lenka; Machala, Miroslav; Topinka, Jan; Schmuczerová, Jana; Krčmář, Pavel; Neča, Jiří; Šujanová, Klára; Kozubík, Alois; Vondráček, Jan
In: Toxicology letters, vol. 206, no. 2, pp. 121–129, 2011, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Alveolar Epithelial Cells/*drug effects/immunology/*metabolism, Animals, Apoptosis/drug effects, Aryl Hydrocarbon Hydroxylases/genetics/metabolism, Benzo(a)pyrene/metabolism/*toxicity, Carcinogens, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, DNA Adducts/*metabolism, Environmental/toxicity, Enzyme Activation/drug effects, Gene Expression Regulation/drug effects, Inflammation Mediators/*metabolism, Messenger/metabolism, Mutagens/*toxicity, p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism, Phosphorylation/drug effects, Post-Translational/drug effects, Protein Kinase Inhibitors/pharmacology, Protein Processing, Rats, RNA, Tumor Necrosis Factor-alpha/*metabolism, Tumor Suppressor Protein p53/metabolism
@article{umannova_benzopyrene_2011,
title = {Benzo[a]pyrene and tumor necrosis factor-α coordinately increase genotoxic damage and the production of proinflammatory mediators in alveolar epithelial type II cells.},
author = {Lenka Umannová and Miroslav Machala and Jan Topinka and Jana Schmuczerová and Pavel Krčmář and Jiří Neča and Klára Šujanová and Alois Kozubík and Jan Vondráček},
doi = {10.1016/j.toxlet.2011.06.029},
issn = {1879-3169 0378-4274},
year = {2011},
date = {2011-10-01},
journal = {Toxicology letters},
volume = {206},
number = {2},
pages = {121–129},
abstract = {Alveolar type II epithelial (AEII) cells regulate lung inflammatory response and, simultaneously, they are a target of environmental carcinogenic factors. We employed an in vitro model of rat AEII cells, the RLE-6TN cell line, in order to analyze the interactive effects of tumor necrosis factor-α (TNF-α), a cytokine which plays a key role in the initiation of inflammatory responses in the lung, and benzo[a]pyrene (BaP), a highly carcinogenic polycyclic aromatic hydrocarbon. TNF-α strongly augmented the formation of stable BaP diol epoxide-DNA adducts in AEII cells, which was associated with enhanced p53-Ser15 phosphorylation and decreased cell survival. The increased genotoxicity of BaP was associated with altered expression of cytochrome P450 (CYP) enzymes involved in its bioactivation, a simultaneous suppression of CYP1A1 and enhancement of CYP1B1 expression. Importantly, BaP and TNF-α acted synergistically to upregulate key inflammatory regulators in AEII cells, including the expression of inducible NO synthase and cyclooxygenase-2 (COX-2), and enhanced prostaglandin E2 production and expression of proinflammatory cytokines, such as TNF-α, interleukin-1β and interleukin-6. We observed that BaP and TNF-α together strongly activated p38 kinase, a principal regulator of inflammatory response. SB202190, a specific p38 inhibitor, prevented induction of both COX-2 and proinflammatory cytokines, thus confirming that p38 activity was crucial for the observed inflammatory reaction. Taken together, our data demonstrated, for the first time, that a proinflammatory cytokine and an environmental PAH may interact to potentiate both DNA damage and the inflammatory response in AEII cells, which may occur through coordinated upregulation of p38 activity.},
note = {Place: Netherlands},
keywords = {Alveolar Epithelial Cells/*drug effects/immunology/*metabolism, Animals, Apoptosis/drug effects, Aryl Hydrocarbon Hydroxylases/genetics/metabolism, Benzo(a)pyrene/metabolism/*toxicity, Carcinogens, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, DNA Adducts/*metabolism, Environmental/toxicity, Enzyme Activation/drug effects, Gene Expression Regulation/drug effects, Inflammation Mediators/*metabolism, Messenger/metabolism, Mutagens/*toxicity, p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism, Phosphorylation/drug effects, Post-Translational/drug effects, Protein Kinase Inhibitors/pharmacology, Protein Processing, Rats, RNA, Tumor Necrosis Factor-alpha/*metabolism, Tumor Suppressor Protein p53/metabolism},
pubstate = {published},
tppubtype = {article}
}
Andrysík, Zdeněk; Vondráček, Jan; Marvanová, Soňa; Ciganek, Miroslav; Neča, Jiří; Pěnčíková, Kateřina; Mahadevan, Brinda; Topinka, Jan; Baird, William M.; Kozubík, Alois; Machala, Miroslav
In: Mutation research, vol. 714, no. 1-2, pp. 53–62, 2011, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/metabolism, DNA Adducts/drug effects, DNA Damage/*drug effects, Dose-Response Relationship, Drug, Genes, Liver/drug effects, Mutagens/*toxicity, Organic Chemicals/*toxicity, p53/drug effects, Particulate Matter/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors
@article{andrysik_activation_2011,
title = {Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons.},
author = {Zdeněk Andrysík and Jan Vondráček and Soňa Marvanová and Miroslav Ciganek and Jiří Neča and Kateřina Pěnčíková and Brinda Mahadevan and Jan Topinka and William M. Baird and Alois Kozubík and Miroslav Machala},
doi = {10.1016/j.mrfmmm.2011.06.011},
issn = {0027-5107},
year = {2011},
date = {2011-09-01},
journal = {Mutation research},
volume = {714},
number = {1-2},
pages = {53–62},
abstract = {Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction of the AhR-mediated transcription, such as cytochrome P450 1A1/1B1 expression, and the AhR-dependent cell proliferation. Importantly, these toxic events occurred at doses one order of magnitude lower than DNA damage. The AhR-mediated activity of the neutral fraction was linked to PAHs and their derivatives, as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls were only minor contributors to the overall AhR-mediated activity. Taken together, our data suggest that more attention should be paid to the AhR-dependent nongenotoxic events elicited by urban PM constituents, especially PAHs and their derivatives.},
note = {Place: Netherlands},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/metabolism, DNA Adducts/drug effects, DNA Damage/*drug effects, Dose-Response Relationship, Drug, Genes, Liver/drug effects, Mutagens/*toxicity, Organic Chemicals/*toxicity, p53/drug effects, Particulate Matter/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jirina; Kabátková, Markéta; Bryja, Vítezslav; Umannová, Lenka; Bernatík, Ondrej; Kozubík, Alois; Machala, Miroslav; Vondrácek, Jan
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 122, no. 2, pp. 349–360, 2011, ISSN: 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon Hydroxylases/genetics/metabolism, Aryl Hydrocarbon/genetics/*metabolism, beta Catenin/genetics/*metabolism, Cadherins/genetics, Cell Adhesion, Cell Differentiation, Cell Line, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, Down-Regulation/drug effects, Hepatocytes/drug effects, Inbred F344, Liver/*drug effects, Polychlorinated Dibenzodioxins/toxicity, Rats, Receptors, Wnt Proteins/genetics/*metabolism, Wnt Signaling Pathway
@article{prochazkova_interplay_2011,
title = {The interplay of the aryl hydrocarbon receptor and β-catenin alters both AhR-dependent transcription and Wnt/β-catenin signaling in liver progenitors.},
author = {Jirina Procházková and Markéta Kabátková and Vítezslav Bryja and Lenka Umannová and Ondrej Bernatík and Alois Kozubík and Miroslav Machala and Jan Vondrácek},
doi = {10.1093/toxsci/kfr129},
issn = {1096-0929},
year = {2011},
date = {2011-08-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {122},
number = {2},
pages = {349–360},
abstract = {β-catenin is a key integrator of cadherin-mediated cell-cell adhesion and transcriptional regulation through the Wnt/β-catenin pathway, which plays an important role in liver biology. Using a model of contact-inhibited liver progenitor cells, we examined the interactions of Wnt/β-catenin signaling with the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, which mediates the toxicity of dioxin-like compounds, including their effects on development and hepatocarcinogenesis. We found that AhR and Wnt/β-catenin cooperated in the induction of AhR transcriptional targets, such as Cyp1a1 and Cyp1b1. However, simultaneously, the activation of AhR led to a decrease of dephosphorylated active β-catenin pool, as well as to hypophosphorylation of Dishevelled, participating in regulation of Wnt signaling. A sustained AhR activation by its model ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), led to a downregulation of a number of Wnt/β-catenin pathway target genes. TCDD also induced a switch in cytokeratin expression, where downregulation of cytokeratins 14 and 19 was accompanied with an increased cytokeratin 8 expression. Together with a downregulation of additional markers associated with stem-like phenotype, this indicated that the AhR activation interfered with differentiation of liver progenitors. The downregulation of β-catenin was also related to a reduced cell adhesion, disruption of E-cadherin-mediated cell-cell junctions and an increased G1-S transition in liver progenitor cell line. In conclusion, although β-catenin augmented the expression of selected AhR target genes, the persistent AhR activation may lead to downregulation of Wnt/β-catenin signaling, thus altering differentiation and/or proliferative status of liver progenitor cells.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon Hydroxylases/genetics/metabolism, Aryl Hydrocarbon/genetics/*metabolism, beta Catenin/genetics/*metabolism, Cadherins/genetics, Cell Adhesion, Cell Differentiation, Cell Line, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, Down-Regulation/drug effects, Hepatocytes/drug effects, Inbred F344, Liver/*drug effects, Polychlorinated Dibenzodioxins/toxicity, Rats, Receptors, Wnt Proteins/genetics/*metabolism, Wnt Signaling Pathway},
pubstate = {published},
tppubtype = {article}
}
Trilecová, Lenka; Krčková, Simona; Marvanová, Soňa; Pĕnčíková, Kateřina; Krčmář, Pavel; Neča, Jiří; Hulinková, Petra; Pálková, Lenka; Ciganek, Miroslav; Milcová, Alena; Topinka, Jan; Vondráček, Jan; Machala, Miroslav
Toxic effects of methylated benzo[a]pyrenes in rat liver stem-like cells. Journal Article
In: Chemical research in toxicology, vol. 24, no. 6, pp. 866–876, 2011, ISSN: 1520-5010 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/*chemistry/*toxicity, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1, DNA Adducts/metabolism, Epithelial Cells/drug effects/metabolism, Gene Expression Regulation/drug effects, Liver/*cytology, Methylation, Mutagens/*chemistry/*toxicity, Oxidative Stress/drug effects, Protein Kinases/metabolism, Rats, Receptors, Stem Cells/drug effects/metabolism, Tumor, Tumor Suppressor Protein p53/metabolism
@article{trilecova_toxic_2011,
title = {Toxic effects of methylated benzo[a]pyrenes in rat liver stem-like cells.},
author = {Lenka Trilecová and Simona Krčková and Soňa Marvanová and Kateřina Pĕnčíková and Pavel Krčmář and Jiří Neča and Petra Hulinková and Lenka Pálková and Miroslav Ciganek and Alena Milcová and Jan Topinka and Jan Vondráček and Miroslav Machala},
doi = {10.1021/tx200049x},
issn = {1520-5010 0893-228X},
year = {2011},
date = {2011-06-01},
journal = {Chemical research in toxicology},
volume = {24},
number = {6},
pages = {866–876},
abstract = {The methylated benzo[a]pyrenes (MeBaPs) are present at significant levels in the environment, especially in the sediments contaminated by petrogenic PAHs. However, the existing data on their toxic effects in vitro and/or in vivo are still largely incomplete. Transcription factor AhR plays a key role in the metabolic activation of PAHs to genotoxic metabolites, but the AhR activation may also contribute to the tumor promoting effects of PAHs. In this study, the AhR-mediated activity of five selected MeBaP isomers was estimated in the DR-CALUX reporter gene assay performed in rat hepatoma cells. Detection of other effects, including induction of CYP1A1, CYP1B1, and AKR1C9 mRNAs, DNA adduct formation, production of reactive oxygen species, oxidation of deoxyguanosine, and cell cycle modulation and apoptosis, was performed in the rat liver epithelial WB-F344 cell line, a model of liver progenitor cells. We identified 1-MeBaP as the most potent inducer of AhR activation, stable DNA adduct formation, checkpoint kinase 1 and p53 phosphorylation, and apoptosis. These effects suggest that 1-MeBaP is a potent genotoxin eliciting a typical sequence of events ascribed to carcinogenic PAHs: induction of CYP1 enzymes, formation of high levels of DNA adducts, activation of DNA damage responses (including p53 phosphorylation), and cell death. In contrast, 10-MeBaP, representing BaP isomers substituted with the methyl group in the angular ring, elicited only low levels DNA adduct formation and apoptosis. Other MeBaPs under study also elicited strong apoptotic responses associated with DNA adduct formation as the prevalent mode of toxic action of these compounds in liver cells. MeBaPs induced a weak production of ROS, which did not lead to significant oxidative DNA damage. Importantly, 1-MeBaP and 3-MeBaP were found to be potent AhR agonists, one order of magnitude more potent than BaP, thus suggesting that the AhR-dependent modulations of gene expression, deregulation of cell survival mechanisms, and further nongenotoxic effects associated with AhR activation may further contribute to their tumor promotion and carcinogenicity.},
note = {Place: United States},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/*chemistry/*toxicity, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1, DNA Adducts/metabolism, Epithelial Cells/drug effects/metabolism, Gene Expression Regulation/drug effects, Liver/*cytology, Methylation, Mutagens/*chemistry/*toxicity, Oxidative Stress/drug effects, Protein Kinases/metabolism, Rats, Receptors, Stem Cells/drug effects/metabolism, Tumor, Tumor Suppressor Protein p53/metabolism},
pubstate = {published},
tppubtype = {article}
}