2023
Kvokačková, Barbora; Fedr, Radek; Kužílková, Daniela; Stuchlý, Jan; Vávrová, Adéla; Navrátil, Jiří; Fabian, Pavel; Ondruššek, Róbert; Ovesná, Petra; Remšík, Ján; Bouchal, Jan; Kalina, Tomáš; Souček, Karel
Single-cell protein profiling defines cell populations associated with triple-negative breast cancer aggressiveness. Journal Article
In: Molecular oncology, vol. 17, no. 6, pp. 1024–1040, 2023, ISSN: 1878-0261 1574-7891, (Place: United States).
Abstract | Links | BibTeX | Tags: *Triple Negative Breast Neoplasms/metabolism, Cell Line, Humans, mass cytometry, phenotypic plasticity, Proteomics, Retrospective Studies, Signal Transduction, single-cell profiles, Stromal Cells/metabolism, triple-negative breast cancer, Tumor, tumor heterogeneity, Tumor microenvironment, unsupervised machine learning algorithm
@article{kvokackova_single-cell_2023,
title = {Single-cell protein profiling defines cell populations associated with triple-negative breast cancer aggressiveness.},
author = {Barbora Kvokačková and Radek Fedr and Daniela Kužílková and Jan Stuchlý and Adéla Vávrová and Jiří Navrátil and Pavel Fabian and Róbert Ondruššek and Petra Ovesná and Ján Remšík and Jan Bouchal and Tomáš Kalina and Karel Souček},
doi = {10.1002/1878-0261.13365},
issn = {1878-0261 1574-7891},
year = {2023},
date = {2023-06-01},
journal = {Molecular oncology},
volume = {17},
number = {6},
pages = {1024–1040},
abstract = {Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer that lacks targeted therapy. TNBC manifests characteristic, extensive intratumoral heterogeneity that promotes disease progression and influences drug response. Single-cell techniques in combination with next-generation computation provide an unprecedented opportunity to identify molecular events with therapeutic potential. Here, we describe the generation of a comprehensive mass cytometry panel for multiparametric detection of 23 phenotypic markers and 13 signaling molecules. This single-cell proteomic approach allowed us to explore the landscape of TNBC heterogeneity, with particular emphasis on the tumor microenvironment. We prospectively profiled freshly resected tumors from 26 TNBC patients. These tumors contained phenotypically distinct subpopulations of cancer and stromal cells that were associated with the patient's clinical status at the time of surgery. We further classified the epithelial-mesenchymal plasticity of tumor cells, and molecularly defined phenotypically diverse populations of tumor-associated stroma. Furthermore, in a retrospective tissue-microarray TNBC cohort, we showed that the level of CD97 at the time of surgery has prognostic potential.},
note = {Place: United States},
keywords = {*Triple Negative Breast Neoplasms/metabolism, Cell Line, Humans, mass cytometry, phenotypic plasticity, Proteomics, Retrospective Studies, Signal Transduction, single-cell profiles, Stromal Cells/metabolism, triple-negative breast cancer, Tumor, tumor heterogeneity, Tumor microenvironment, unsupervised machine learning algorithm},
pubstate = {published},
tppubtype = {article}
}
2022
Říhová, Kamila; Dúcka, Monika; Zambo, Iva Staniczková; Vymětalová, Ladislava; Šrámek, Martin; Trčka, Filip; Verner, Jan; Drápela, Stanislav; Fedr, Radek; Suchánková, Tereza; Pavlatovská, Barbora; Ondroušková, Eva; Kubelková, Irena; Zapletalová, Danica; Tuček, Štěpán; Múdry, Peter; Krákorová, Dagmar Adámková; Knopfová, Lucia; Šmarda, Jan; Souček, Karel; Borsig, Lubor; Beneš, Petr
Transcription factor c-Myb: novel prognostic factor in osteosarcoma. Journal Article
In: Clinical & experimental metastasis, vol. 39, no. 2, pp. 375–390, 2022, ISSN: 1573-7276 0262-0898, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Bone Neoplasms/pathology, *Osteosarcoma/pathology, Animals, c-Myb, Cell Line, Cell Movement/genetics, Cell Proliferation, Chemoresistance, Gene Expression Regulation, Humans, Metastasis, Mice, Neoplastic, Osteosarcoma, Prognosis, proliferation, Retrospective Studies, Tumor, Wnt Signaling Pathway
@article{rihova_transcription_2022,
title = {Transcription factor c-Myb: novel prognostic factor in osteosarcoma.},
author = {Kamila Říhová and Monika Dúcka and Iva Staniczková Zambo and Ladislava Vymětalová and Martin Šrámek and Filip Trčka and Jan Verner and Stanislav Drápela and Radek Fedr and Tereza Suchánková and Barbora Pavlatovská and Eva Ondroušková and Irena Kubelková and Danica Zapletalová and Štěpán Tuček and Peter Múdry and Dagmar Adámková Krákorová and Lucia Knopfová and Jan Šmarda and Karel Souček and Lubor Borsig and Petr Beneš},
doi = {10.1007/s10585-021-10145-4},
issn = {1573-7276 0262-0898},
year = {2022},
date = {2022-04-01},
journal = {Clinical & experimental metastasis},
volume = {39},
number = {2},
pages = {375–390},
abstract = {The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.},
note = {Place: Netherlands},
keywords = {*Bone Neoplasms/pathology, *Osteosarcoma/pathology, Animals, c-Myb, Cell Line, Cell Movement/genetics, Cell Proliferation, Chemoresistance, Gene Expression Regulation, Humans, Metastasis, Mice, Neoplastic, Osteosarcoma, Prognosis, proliferation, Retrospective Studies, Tumor, Wnt Signaling Pathway},
pubstate = {published},
tppubtype = {article}
}