2008
Umannová, Lenka; Machala, Miroslav; Topinka, Jan; Nováková, Zuzana; Milcová, Alena; Kozubík, Alois; Vondrácek, Jan
In: Mutation research, vol. 640, no. 1-2, pp. 162–169, 2008, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon Hydroxylases/*metabolism, Benzo(a)pyrene/*toxicity, Cell Line, Cytochrome P-450 CYP1B1, Drug Synergism, Epithelial Cells/drug effects/enzymology, Liver/*drug effects/*enzymology, Male, Rats, Tumor Necrosis Factor-alpha/*pharmacology, Up-Regulation
@article{umannova_tumor_2008,
title = {Tumor necrosis factor-alpha potentiates genotoxic effects of benzo[a]pyrene in rat liver epithelial cells through upregulation of cytochrome P450 1B1 expression.},
author = {Lenka Umannová and Miroslav Machala and Jan Topinka and Zuzana Nováková and Alena Milcová and Alois Kozubík and Jan Vondrácek},
doi = {10.1016/j.mrfmmm.2008.02.001},
issn = {0027-5107},
year = {2008},
date = {2008-04-01},
journal = {Mutation research},
volume = {640},
number = {1-2},
pages = {162–169},
abstract = {Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant, which may contribute to the development of human cancer. The ultimate carcinogenic BaP metabolite produced by cytochrome P450 enzymes (CYP), such as CYP1A1 and CYP1B1, anti-BaP-7,8-diol-9,10-epoxide, binds covalently to DNA and causes mutations. The levels of various CYP isoforms can be significantly modulated under inflammatory conditions. As the chronic inflammation is known to contribute to carcinogenesis, we investigated interactions of a major proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), and BaP in regulation of the expression of CYP1A1/1B1 and induction of DNA damage in rat liver epithelial WB-F344 cells. TNF-alpha enhanced induction of CYP1B1, while it simultaneously suppressed the BaP-induced CYP1A1 expression. The observed deregulation of CYP1 induction was found to be associated with a significantly enhanced formation of DNA adducts. The elevated DNA damage corresponded with increased phosphorylation of p53 tumor suppressor at Ser-15 residue, enhanced accumulation of cells in the S-phase of cell cycle and potentiation of BaP-induced apoptosis. Inhibition of CYP1B1 by fluoranthene significantly decreased both the formation of DNA adducts and the induction of apoptosis in WB-F344 cells treated with BaP and TNF-alpha, thus suggesting that this isoform might be responsible for genotoxic effects of BaP in nonparenchymal liver cells. Our results seem to indicate that inflammatory conditions might enhance genotoxic effects of carcinogenic polycyclic aromatic hydrocarbons through upregulation of CYP1B1 expression.},
note = {Place: Netherlands},
keywords = {Animals, Aryl Hydrocarbon Hydroxylases/*metabolism, Benzo(a)pyrene/*toxicity, Cell Line, Cytochrome P-450 CYP1B1, Drug Synergism, Epithelial Cells/drug effects/enzymology, Liver/*drug effects/*enzymology, Male, Rats, Tumor Necrosis Factor-alpha/*pharmacology, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
2006
Soucek, Karel; Pacherník, Jirí; Kubala, Lukás; Vondrácek, Jan; Hofmanová, Jirina; Kozubík, Alois
Transforming growth factor-beta1 inhibits all-trans retinoic acid-induced apoptosis. Journal Article
In: Leukemia research, vol. 30, no. 5, pp. 607–623, 2006, ISSN: 0145-2126, (Place: England).
Abstract | Links | BibTeX | Tags: Apoptosis Regulatory Proteins/metabolism/pharmacology, Apoptosis/*drug effects/physiology, bcl-2-Associated X Protein/drug effects/metabolism, CASP8 and FADD-Like Apoptosis Regulating Protein, Caspase 3, Caspase 8, Caspases/drug effects/metabolism, CD11b Antigen/biosynthesis/drug effects, Cell Cycle/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Survival/drug effects, Cultured, Cyclin-Dependent Kinase Inhibitor p21/biosynthesis/drug effects, Drug Synergism, Enzyme Activation/drug effects, G1 Phase/drug effects, Granulocytes/drug effects/physiology, HL-60 Cells, Humans, Intracellular Signaling Peptides and Proteins/drug effects/metabolism, Membrane Glycoproteins/metabolism/pharmacology, Mitochondrial Membranes/drug effects/physiology, Myeloid Cell Leukemia Sequence 1 Protein, Neoplasm Proteins/drug effects/metabolism, Phosphorylation, Proto-Oncogene Proteins c-bcl-2/drug effects/metabolism, Reactive Oxygen Species/metabolism, Resting Phase, Retinoblastoma Protein/drug effects/metabolism, TNF-Related Apoptosis-Inducing Ligand, Transforming Growth Factor beta/*pharmacology, Transforming Growth Factor beta1, Tretinoin/*antagonists & inhibitors/pharmacology, Tumor Cells, Tumor Necrosis Factor-alpha/metabolism/pharmacology
@article{soucek_transforming_2006,
title = {Transforming growth factor-beta1 inhibits all-trans retinoic acid-induced apoptosis.},
author = {Karel Soucek and Jirí Pacherník and Lukás Kubala and Jan Vondrácek and Jirina Hofmanová and Alois Kozubík},
doi = {10.1016/j.leukres.2005.09.007},
issn = {0145-2126},
year = {2006},
date = {2006-05-01},
journal = {Leukemia research},
volume = {30},
number = {5},
pages = {607–623},
abstract = {The interaction between retinoids and transforming growth factor-beta1 (TGF-beta1) leading to regulation of proliferation, differentiation and apoptosis is not still fully understood. In this study, we demonstrated that a combination treatment with all-trans retinoic acid (ATRA) and TGF-beta1 led to the enhancement of ATRA-induced suppression of cell proliferation, which is accompanied by inhibition of ATRA-induced apoptosis in human leukemia HL-60 cells. This effect was preceded by the arrest of cells in G0/G1 cell cycle phase linked with pRb protein dephosphorylation, continuous accumulation of p21 and transiently increased level of p27, inhibitors of cyclin-dependent kinases. Inhibition of ATRA-induced apoptosis by TGF-beta1 was associated with an increased level of Mcl-1 protein, an anti-apoptotic member of Bcl-2 family, but not with inhibition of mitochondrial membrane depolarization. Levels of other Bcl-2 family proteins (Bcl-2, Bcl-X(L), Bad, Bak, Bax) were unaffected by simultaneous ATRA and TGF-beta1 treatment, when compared to ATRA alone. Upregulation of c-FLIP(L) protein, an inhibitor of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), correspond with inhibition of ATRA-induced (autocrine TRAIL-mediated) caspase-8 activation and apoptosis. These results suggest that apoptosis inhibition associated with proliferation block could depend on modulation of the TRAIL apoptotic pathway and regulation of the Mcl-1 protein level. In summary, we demonstrate that the balance of processes leading to regulation of proliferation and differentiation of myeloid cells can modulate cell sensitivity to apoptosis-inducing stimuli.},
note = {Place: England},
keywords = {Apoptosis Regulatory Proteins/metabolism/pharmacology, Apoptosis/*drug effects/physiology, bcl-2-Associated X Protein/drug effects/metabolism, CASP8 and FADD-Like Apoptosis Regulating Protein, Caspase 3, Caspase 8, Caspases/drug effects/metabolism, CD11b Antigen/biosynthesis/drug effects, Cell Cycle/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Survival/drug effects, Cultured, Cyclin-Dependent Kinase Inhibitor p21/biosynthesis/drug effects, Drug Synergism, Enzyme Activation/drug effects, G1 Phase/drug effects, Granulocytes/drug effects/physiology, HL-60 Cells, Humans, Intracellular Signaling Peptides and Proteins/drug effects/metabolism, Membrane Glycoproteins/metabolism/pharmacology, Mitochondrial Membranes/drug effects/physiology, Myeloid Cell Leukemia Sequence 1 Protein, Neoplasm Proteins/drug effects/metabolism, Phosphorylation, Proto-Oncogene Proteins c-bcl-2/drug effects/metabolism, Reactive Oxygen Species/metabolism, Resting Phase, Retinoblastoma Protein/drug effects/metabolism, TNF-Related Apoptosis-Inducing Ligand, Transforming Growth Factor beta/*pharmacology, Transforming Growth Factor beta1, Tretinoin/*antagonists & inhibitors/pharmacology, Tumor Cells, Tumor Necrosis Factor-alpha/metabolism/pharmacology},
pubstate = {published},
tppubtype = {article}
}
2004
Kovaríková, Martina; Hofmanová, Jirina; Soucek, Karel; Kozubík, Alois
The effects of TNF-alpha and inhibitors of arachidonic acid metabolism on human colon HT-29 cells depend on differentiation status. Journal Article
In: Differentiation; research in biological diversity, vol. 72, no. 1, pp. 23–31, 2004, ISSN: 0301-4681, (Place: England).
Abstract | Links | BibTeX | Tags: *Flavanones, Adenocarcinoma/drug therapy/pathology, Arachidonate 5-Lipoxygenase/metabolism, Arachidonic Acid/*metabolism, Butyrates/pharmacology, Caspase 3, Caspases/drug effects/metabolism, Cell Cycle/drug effects, Cell Differentiation/*drug effects, Cell Division/drug effects, Colonic Neoplasms/drug therapy/metabolism/pathology, Cyclooxygenase 2, Cyclooxygenase 2 Inhibitors, Cyclooxygenase Inhibitors/*pharmacology, Drug Synergism, Flavonoids/pharmacology, HT29 Cells/drug effects, Humans, Indomethacin/pharmacology, Isoenzymes/antagonists & inhibitors/metabolism, Lipoxygenase Inhibitors/*pharmacology, Masoprocol/pharmacology, Membrane Proteins, Niflumic Acid/pharmacology, Prostaglandin-Endoperoxide Synthases/metabolism, Tumor Necrosis Factor-alpha/*pharmacology
@article{kovarikova_effects_2004,
title = {The effects of TNF-alpha and inhibitors of arachidonic acid metabolism on human colon HT-29 cells depend on differentiation status.},
author = {Martina Kovaríková and Jirina Hofmanová and Karel Soucek and Alois Kozubík},
doi = {10.1111/j.1432-0436.2004.07201006.x},
issn = {0301-4681},
year = {2004},
date = {2004-02-01},
journal = {Differentiation; research in biological diversity},
volume = {72},
number = {1},
pages = {23–31},
abstract = {The level of differentiation could influence sensitivity of colonic epithelial cells to various stimuli. In our study, the effects of TNF-alpha, inhibitors of arachidonic acid (AA) metabolism (baicalein, BA; indomethacin, INDO; niflumic acid, NA; nordihydroguaiaretic acid, NDGA), and/or their combinations on undifferentiated or sodium butyrate (NaBt)-differentiated human colon adenocarcinoma HT-29 cells were compared. NaBt-treated cells became growth arrested (blocked in G0/G1 phase of the cell cycle), and showed down-regulated Bcl-xL and up-regulated Bak proteins and increased expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX). These cells were more perceptive to anti-proliferative and apoptotic effects of TNF-alpha. Both inhibitors of LOX (BA and NDGA) and COX (INDO and NA) in higher concentrations modulated cell cycle changes accompanying NaBt-induced differentiation and induced various level of cell death in undifferentiated and differentiated cells. Most important is our finding that TNF-alpha action on proliferation and cell death can be potentiated by co-treatment of cells with AA metabolism inhibitors, and that these effects were more significant in undifferentiated cells. TNF-alpha and INDO co-treatment was associated with accumulation of cells in G0/G1 cell cycle phase, increased reactive oxygen species production, and elevated caspase-3 activity. These results indicate the role of differentiation status in the sensitivity of HT-29 cells to the anti-proliferative and proapoptotic effects of TNF-alpha, AA metabolism inhibitors, and their combinations, and imply promising possibility for novel anti-cancer strategies.},
note = {Place: England},
keywords = {*Flavanones, Adenocarcinoma/drug therapy/pathology, Arachidonate 5-Lipoxygenase/metabolism, Arachidonic Acid/*metabolism, Butyrates/pharmacology, Caspase 3, Caspases/drug effects/metabolism, Cell Cycle/drug effects, Cell Differentiation/*drug effects, Cell Division/drug effects, Colonic Neoplasms/drug therapy/metabolism/pathology, Cyclooxygenase 2, Cyclooxygenase 2 Inhibitors, Cyclooxygenase Inhibitors/*pharmacology, Drug Synergism, Flavonoids/pharmacology, HT29 Cells/drug effects, Humans, Indomethacin/pharmacology, Isoenzymes/antagonists & inhibitors/metabolism, Lipoxygenase Inhibitors/*pharmacology, Masoprocol/pharmacology, Membrane Proteins, Niflumic Acid/pharmacology, Prostaglandin-Endoperoxide Synthases/metabolism, Tumor Necrosis Factor-alpha/*pharmacology},
pubstate = {published},
tppubtype = {article}
}