2024
Valcikova, Barbora; Vadovicova, Natalia; Smolkova, Karolina; Zacpalova, Magdalena; Krejci, Pavel; Lee, Shannon; Rauch, Jens; Kolch, Walter; Kriegsheim, Alexander; Dorotikova, Anna; Andrysik, Zdenek; Vichova, Rachel; Vacek, Ondrej; Soucek, Karel; Uldrijan, Stjepan
eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations. Journal Article
In: Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 44, pp. e2321305121, 2024, ISSN: 1091-6490 0027-8424, (Place: United States).
Abstract | Links | BibTeX | Tags: *Eukaryotic Initiation Factor-4F/metabolism/genetics, *GTP Phosphohydrolases/metabolism/genetics, *MAP Kinase Signaling System/genetics, *Melanoma/genetics/metabolism/pathology, *Membrane Proteins/metabolism/genetics, *Mutation, *Proto-Oncogene Proteins B-raf/genetics/metabolism, Animals, Cell Line, Dual Specificity Phosphatase 6/metabolism/genetics, DUSP6, eIF4F, ERK, Extracellular Signal-Regulated MAP Kinases/metabolism, Humans, MAP kinase, Melanoma, Mice, Tumor
@article{valcikova_eif4f_2024,
title = {eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations.},
author = {Barbora Valcikova and Natalia Vadovicova and Karolina Smolkova and Magdalena Zacpalova and Pavel Krejci and Shannon Lee and Jens Rauch and Walter Kolch and Alexander Kriegsheim and Anna Dorotikova and Zdenek Andrysik and Rachel Vichova and Ondrej Vacek and Karel Soucek and Stjepan Uldrijan},
doi = {10.1073/pnas.2321305121},
issn = {1091-6490 0027-8424},
year = {2024},
date = {2024-10-01},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {121},
number = {44},
pages = {e2321305121},
abstract = {The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.},
note = {Place: United States},
keywords = {*Eukaryotic Initiation Factor-4F/metabolism/genetics, *GTP Phosphohydrolases/metabolism/genetics, *MAP Kinase Signaling System/genetics, *Melanoma/genetics/metabolism/pathology, *Membrane Proteins/metabolism/genetics, *Mutation, *Proto-Oncogene Proteins B-raf/genetics/metabolism, Animals, Cell Line, Dual Specificity Phosphatase 6/metabolism/genetics, DUSP6, eIF4F, ERK, Extracellular Signal-Regulated MAP Kinases/metabolism, Humans, MAP kinase, Melanoma, Mice, Tumor},
pubstate = {published},
tppubtype = {article}
}
2019
Boudny, Miroslav; Zemanova, Jana; Khirsariya, Prashant; Borsky, Marek; Verner, Jan; Cerna, Jana; Oltova, Alexandra; Seda, Vaclav; Mraz, Marek; Jaros, Josef; Jaskova, Zuzana; Spunarova, Michaela; Brychtova, Yvona; Soucek, Karel; Drapela, Stanislav; Kasparkova, Marie; Mayer, Jiri; Paruch, Kamil; Trbusek, Martin
Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells. Journal Article
In: Haematologica, vol. 104, no. 12, pp. 2443–2455, 2019, ISSN: 1592-8721 0390-6078, (Place: Italy).
Abstract | Links | BibTeX | Tags: *Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays
@article{boudny_novel_2019,
title = {Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells.},
author = {Miroslav Boudny and Jana Zemanova and Prashant Khirsariya and Marek Borsky and Jan Verner and Jana Cerna and Alexandra Oltova and Vaclav Seda and Marek Mraz and Josef Jaros and Zuzana Jaskova and Michaela Spunarova and Yvona Brychtova and Karel Soucek and Stanislav Drapela and Marie Kasparkova and Jiri Mayer and Kamil Paruch and Martin Trbusek},
doi = {10.3324/haematol.2018.203430},
issn = {1592-8721 0390-6078},
year = {2019},
date = {2019-12-01},
journal = {Haematologica},
volume = {104},
number = {12},
pages = {2443–2455},
abstract = {Introduction of small-molecule inhibitors of B-cell receptor signaling and BCL2 protein significantly improves therapeutic options in chronic lymphocytic leukemia. However, some patients suffer from adverse effects mandating treatment discontinuation, and cases with TP53 defects more frequently experience early progression of the disease. Development of alternative therapeutic approaches is, therefore, of critical importance. Here we report details of the anti-chronic lymphocytic leukemia single-agent activity of MU380, our recently identified potent, selective, and metabolically robust inhibitor of checkpoint kinase 1. We also describe a newly developed enantioselective synthesis of MU380, which allows preparation of gram quantities of the substance. Checkpoint kinase 1 is a master regulator of replication operating primarily in intra-S and G(2)/M cell cycle checkpoints. Initially tested in leukemia and lymphoma cell lines, MU380 significantly potentiated efficacy of gemcitabine, a clinically used inducer of replication stress. Moreover, MU380 manifested substantial single-agent activity in both TP53-wild type and TP53-mutated leukemia and lymphoma cell lines. In chronic lymphocytic leukemia-derived cell lines MEC-1, MEC-2 (both TP53-mut), and OSU-CLL (TP53-wt) the inhibitor impaired cell cycle progression and induced apoptosis. In primary clinical samples, MU380 used as a single-agent noticeably reduced the viability of unstimulated chronic lymphocytic leukemia cells as well as those induced to proliferate by anti-CD40/IL-4 stimuli. In both cases, effects were comparable in samples harboring p53 pathway dysfunction (TP53 mutations or ATM mutations) and TP53-wt/ATM-wt cells. Lastly, MU380 also exhibited significant in vivo activity in a xenotransplant mouse model (immunodeficient strain NOD-scid IL2Rγ(null) ) where it efficiently suppressed growth of subcutaneous tumors generated from MEC-1 cells.},
note = {Place: Italy},
keywords = {*Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}