2024
Besse, Andrej; Sedlarikova, Lenka; Buechler, Lorina; Kraus, Marianne; Yang, Chieh-Hsiang; Strakova, Nicol; Soucek, Karel; Navratil, Jiri; Svoboda, Marek; Welm, Alana L.; Joerger, Markus; Driessen, Christoph; Besse, Lenka
HIV-protease inhibitors potentiate the activity of carfilzomib in triple-negative breast cancer. Journal Article
In: British journal of cancer, vol. 131, no. 5, pp. 918–930, 2024, ISSN: 1532-1827 0007-0920, (Place: England).
Abstract | Links | BibTeX | Tags: *ATP Binding Cassette Transporter, *Bortezomib/pharmacology, *Drug Synergism, *HIV Protease Inhibitors/pharmacology, *Lopinavir/pharmacology, *Nelfinavir/pharmacology, *Oligopeptides/pharmacology, *Triple Negative Breast Neoplasms/drug therapy/pathology, *Unfolded Protein Response/drug effects, Antineoplastic Combined Chemotherapy Protocols/pharmacology, Apoptosis/drug effects, ATP Binding Cassette Transporter, Cell Line, Endoplasmic Reticulum Stress/drug effects, Female, Humans, Member 2/metabolism/antagonists & inhibitors, Neoplasm Proteins/antagonists & inhibitors/metabolism, Proteasome Inhibitors/pharmacology, Subfamily B/metabolism, Subfamily G, Tumor, X-Box Binding Protein 1/metabolism/genetics
@article{besse_hiv-protease_2024,
title = {HIV-protease inhibitors potentiate the activity of carfilzomib in triple-negative breast cancer.},
author = {Andrej Besse and Lenka Sedlarikova and Lorina Buechler and Marianne Kraus and Chieh-Hsiang Yang and Nicol Strakova and Karel Soucek and Jiri Navratil and Marek Svoboda and Alana L. Welm and Markus Joerger and Christoph Driessen and Lenka Besse},
doi = {10.1038/s41416-024-02774-9},
issn = {1532-1827 0007-0920},
year = {2024},
date = {2024-09-01},
journal = {British journal of cancer},
volume = {131},
number = {5},
pages = {918–930},
abstract = {BACKGROUND: Resistance to chemotherapy is a major problem in the treatment of patients with triple-negative breast cancer (TNBC). Preclinical data suggest that TNBC is dependent on proteasomes; however, clinical observations indicate that the efficacy of proteasome inhibitors in TNBC may be limited, suggesting the need for combination therapies. METHODS: We compared bortezomib and carfilzomib and their combinations with nelfinavir and lopinavir in TNBC cell lines and primary cells with regard to their cytotoxic activity, functional proteasome inhibition, and induction of the unfolded protein response (UPR). Furthermore, we evaluated the involvement of sXBP1, ABCB1, and ABCG2 in the cytotoxic activity of drug combinations. RESULTS: Carfilzomib, via proteasome β5 + β2 inhibition, is more cytotoxic in TNBC than bortezomib, which inhibits β5 + β1 proteasome subunits. The cytotoxicity of carfilzomib was significantly potentiated by nelfinavir or lopinavir. Carfilzomib with lopinavir induced endoplasmic reticulum stress and pro-apoptotic UPR through the accumulation of excess proteasomal substrate protein in TNBC in vitro. Moreover, lopinavir increased the intracellular availability of carfilzomib by inhibiting carfilzomib export from cells that express high levels and activity of ABCB1, but not ABCG2. CONCLUSION: Proteasome inhibition by carfilzomib combined with nelfinavir/lopinavir represents a potential treatment option for TNBC, warranting further investigation.},
note = {Place: England},
keywords = {*ATP Binding Cassette Transporter, *Bortezomib/pharmacology, *Drug Synergism, *HIV Protease Inhibitors/pharmacology, *Lopinavir/pharmacology, *Nelfinavir/pharmacology, *Oligopeptides/pharmacology, *Triple Negative Breast Neoplasms/drug therapy/pathology, *Unfolded Protein Response/drug effects, Antineoplastic Combined Chemotherapy Protocols/pharmacology, Apoptosis/drug effects, ATP Binding Cassette Transporter, Cell Line, Endoplasmic Reticulum Stress/drug effects, Female, Humans, Member 2/metabolism/antagonists & inhibitors, Neoplasm Proteins/antagonists & inhibitors/metabolism, Proteasome Inhibitors/pharmacology, Subfamily B/metabolism, Subfamily G, Tumor, X-Box Binding Protein 1/metabolism/genetics},
pubstate = {published},
tppubtype = {article}
}
2019
Boudny, Miroslav; Zemanova, Jana; Khirsariya, Prashant; Borsky, Marek; Verner, Jan; Cerna, Jana; Oltova, Alexandra; Seda, Vaclav; Mraz, Marek; Jaros, Josef; Jaskova, Zuzana; Spunarova, Michaela; Brychtova, Yvona; Soucek, Karel; Drapela, Stanislav; Kasparkova, Marie; Mayer, Jiri; Paruch, Kamil; Trbusek, Martin
Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells. Journal Article
In: Haematologica, vol. 104, no. 12, pp. 2443–2455, 2019, ISSN: 1592-8721 0390-6078, (Place: Italy).
Abstract | Links | BibTeX | Tags: *Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays
@article{boudny_novel_2019,
title = {Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells.},
author = {Miroslav Boudny and Jana Zemanova and Prashant Khirsariya and Marek Borsky and Jan Verner and Jana Cerna and Alexandra Oltova and Vaclav Seda and Marek Mraz and Josef Jaros and Zuzana Jaskova and Michaela Spunarova and Yvona Brychtova and Karel Soucek and Stanislav Drapela and Marie Kasparkova and Jiri Mayer and Kamil Paruch and Martin Trbusek},
doi = {10.3324/haematol.2018.203430},
issn = {1592-8721 0390-6078},
year = {2019},
date = {2019-12-01},
journal = {Haematologica},
volume = {104},
number = {12},
pages = {2443–2455},
abstract = {Introduction of small-molecule inhibitors of B-cell receptor signaling and BCL2 protein significantly improves therapeutic options in chronic lymphocytic leukemia. However, some patients suffer from adverse effects mandating treatment discontinuation, and cases with TP53 defects more frequently experience early progression of the disease. Development of alternative therapeutic approaches is, therefore, of critical importance. Here we report details of the anti-chronic lymphocytic leukemia single-agent activity of MU380, our recently identified potent, selective, and metabolically robust inhibitor of checkpoint kinase 1. We also describe a newly developed enantioselective synthesis of MU380, which allows preparation of gram quantities of the substance. Checkpoint kinase 1 is a master regulator of replication operating primarily in intra-S and G(2)/M cell cycle checkpoints. Initially tested in leukemia and lymphoma cell lines, MU380 significantly potentiated efficacy of gemcitabine, a clinically used inducer of replication stress. Moreover, MU380 manifested substantial single-agent activity in both TP53-wild type and TP53-mutated leukemia and lymphoma cell lines. In chronic lymphocytic leukemia-derived cell lines MEC-1, MEC-2 (both TP53-mut), and OSU-CLL (TP53-wt) the inhibitor impaired cell cycle progression and induced apoptosis. In primary clinical samples, MU380 used as a single-agent noticeably reduced the viability of unstimulated chronic lymphocytic leukemia cells as well as those induced to proliferate by anti-CD40/IL-4 stimuli. In both cases, effects were comparable in samples harboring p53 pathway dysfunction (TP53 mutations or ATM mutations) and TP53-wt/ATM-wt cells. Lastly, MU380 also exhibited significant in vivo activity in a xenotransplant mouse model (immunodeficient strain NOD-scid IL2Rγ(null) ) where it efficiently suppressed growth of subcutaneous tumors generated from MEC-1 cells.},
note = {Place: Italy},
keywords = {*Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}