2023
Sládeková, Lucia; Zgarbová, Eliška; Vrzal, Radim; Vanda, David; Soural, Miroslav; Jakubcová, Klára; Vázquez-Gómez, Gerardo; Vondráček, Jan; Dvořák, Zdeněk
Switching on/off aryl hydrocarbon receptor and pregnane X receptor activities by chemically modified tryptamines. Journal Article
In: Toxicology letters, vol. 387, pp. 63–75, 2023, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Receptors, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Caco-2 Cells, Humans, Indoles/pharmacology, Microbial indoles, Pregnane X receptor, Pregnane X Receptor/genetics, Steroid/metabolism, Tryptamine, Tryptamines/pharmacology
@article{sladekova_switching_2023,
title = {Switching on/off aryl hydrocarbon receptor and pregnane X receptor activities by chemically modified tryptamines.},
author = {Lucia Sládeková and Eliška Zgarbová and Radim Vrzal and David Vanda and Miroslav Soural and Klára Jakubcová and Gerardo Vázquez-Gómez and Jan Vondráček and Zdeněk Dvořák},
doi = {10.1016/j.toxlet.2023.09.012},
issn = {1879-3169 0378-4274},
year = {2023},
date = {2023-09-01},
journal = {Toxicology letters},
volume = {387},
pages = {63–75},
abstract = {Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.},
note = {Place: Netherlands},
keywords = {*Receptors, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Caco-2 Cells, Humans, Indoles/pharmacology, Microbial indoles, Pregnane X receptor, Pregnane X Receptor/genetics, Steroid/metabolism, Tryptamine, Tryptamines/pharmacology},
pubstate = {published},
tppubtype = {article}
}
2005
Harper, Richart W.; Xu, Changhong; Soucek, Karel; Setiadi, Henny; Eiserich, Jason P.
A reappraisal of the genomic organization of human Nox1 and its splice variants. Journal Article
In: Archives of biochemistry and biophysics, vol. 435, no. 2, pp. 323–330, 2005, ISSN: 0003-9861, (Place: United States).
Abstract | Links | BibTeX | Tags: *DNA Primers, *Genome, Alternative Splicing, Base Sequence, Caco-2 Cells, Computational Biology, Cultured, Epithelial Cells/enzymology, human, Humans, Hydrogen Peroxide/metabolism, Isoenzymes/genetics/metabolism, Male, Molecular Sequence Data, NADPH Oxidase 1, NADPH Oxidases/*genetics/metabolism, Prostate/enzymology, Reactive Oxygen Species/metabolism, Sequence Alignment, Superoxides/metabolism, Tumor Cells
@article{harper_reappraisal_2005,
title = {A reappraisal of the genomic organization of human Nox1 and its splice variants.},
author = {Richart W. Harper and Changhong Xu and Karel Soucek and Henny Setiadi and Jason P. Eiserich},
doi = {10.1016/j.abb.2004.12.021},
issn = {0003-9861},
year = {2005},
date = {2005-03-01},
journal = {Archives of biochemistry and biophysics},
volume = {435},
number = {2},
pages = {323–330},
abstract = {The recent discovery of non-phagocytic NAD(P)H oxidases belonging to the Nox family of enzymes sharing extensive homology to the leukocyte NAD(P)H oxidase has revolutionized our understanding of oxidative signaling related to fundamental biological processes and disease states. One form of this enzyme, Nox1, is a growth factor-responsive enzyme that catalyzes formation of the reactive oxygen species superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)). Its expression is linked to a number of biological responses including cellular proliferation, angiogenesis, and activation of cellular signaling pathways. Whereas early published studies have described three distinct isoforms of Nox1, the current body of literature fails to adequately recognize this notion. Also, functional differences between isoforms remain relatively unexplored. Herein, we report that expression of human Nox1 is restricted to two distinct isoforms derived from a single gene; that is, the full-length gene product and a shorter spliced variant which lacks one of the NAD(P)H binding domains. We have developed PCR primer sets that distinguish between the two forms of Nox1 in several human cell lines. We could not find evidence for expression of the shortest reported form of Nox1 (NOH-1S), previously identified as a proton channel, and the absence of paired splice sites in the gene suggests that it represents a reverse transcriptase artifact. A survey of the scientific literature reveals that the majority of studies related to Nox1 do not utilize molecular strategies that would adequately discern between the two Nox1 variants. The current literature suggest the two identified isoforms of human Nox1 (which we have named Nox1-L and Nox1-S) may be functionally distinct. Future studies related to Nox1 will benefit from establishing the identity of the Nox1 isoform expressed and the functions attributed to each variant.},
note = {Place: United States},
keywords = {*DNA Primers, *Genome, Alternative Splicing, Base Sequence, Caco-2 Cells, Computational Biology, Cultured, Epithelial Cells/enzymology, human, Humans, Hydrogen Peroxide/metabolism, Isoenzymes/genetics/metabolism, Male, Molecular Sequence Data, NADPH Oxidase 1, NADPH Oxidases/*genetics/metabolism, Prostate/enzymology, Reactive Oxygen Species/metabolism, Sequence Alignment, Superoxides/metabolism, Tumor Cells},
pubstate = {published},
tppubtype = {article}
}