2023
Holme, Jørn A.; Vondráček, Jan; Machala, Miroslav; Lagadic-Gossmann, Dominique; Vogel, Christoph F. A.; Ferrec, Eric Le; Sparfel, Lydie; Øvrevik, Johan
In: Biochemical pharmacology, vol. 216, pp. 115801, 2023, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Air Pollutants/toxicity, *Lung Neoplasms/chemically induced/genetics, *Polycyclic Aromatic Hydrocarbons/toxicity, Air pollution, Aryl Hydrocarbon/genetics, Carcinogenesis, Diesel exhaust, Environmental Monitoring, Genotoxicity, Humans, Inflammation, Occupational exposure, Particulate Matter/toxicity, Receptors, Smoking, Tumor metastasis, Tumor microenvironment, Tumor promotion
@article{holme_lung_2023,
title = {Lung cancer associated with combustion particles and fine particulate matter (PM(2.5)) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR).},
author = {Jørn A. Holme and Jan Vondráček and Miroslav Machala and Dominique Lagadic-Gossmann and Christoph F. A. Vogel and Eric Le Ferrec and Lydie Sparfel and Johan Øvrevik},
doi = {10.1016/j.bcp.2023.115801},
issn = {1873-2968 0006-2952},
year = {2023},
date = {2023-10-01},
journal = {Biochemical pharmacology},
volume = {216},
pages = {115801},
abstract = {Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM(2.5)), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM(2.5) exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM(2.5) represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM(2.5), whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.},
note = {Place: England},
keywords = {*Air Pollutants/toxicity, *Lung Neoplasms/chemically induced/genetics, *Polycyclic Aromatic Hydrocarbons/toxicity, Air pollution, Aryl Hydrocarbon/genetics, Carcinogenesis, Diesel exhaust, Environmental Monitoring, Genotoxicity, Humans, Inflammation, Occupational exposure, Particulate Matter/toxicity, Receptors, Smoking, Tumor metastasis, Tumor microenvironment, Tumor promotion},
pubstate = {published},
tppubtype = {article}
}
2022
Šimečková, Pavlína; Pěnčíková, Kateřina; Kováč, Ondrej; Slavík, Josef; Pařenicová, Martina; Vondráček, Jan; Machala, Miroslav
In: The Science of the total environment, vol. 815, pp. 151967, 2022, ISSN: 1879-1026 0048-9697, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Polycyclic Aromatic Hydrocarbons/toxicity, Aryl Hydrocarbon/genetics/metabolism, Benzo(a)pyrene, Cellular stress response, Cytoplasmic and Nuclear/genetics, Energy Metabolism, Humans, Nuclear receptors, Polycyclic aromatic hydrocarbons, Receptors, Signal Transduction, Sphingolipids, Xenobiotics
@article{simeckova_vitro_2022,
title = {In vitro profiling of toxic effects of environmental polycyclic aromatic hydrocarbons on nuclear receptor signaling, disruption of endogenous metabolism and induction of cellular stress.},
author = {Pavlína Šimečková and Kateřina Pěnčíková and Ondrej Kováč and Josef Slavík and Martina Pařenicová and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.scitotenv.2021.151967},
issn = {1879-1026 0048-9697},
year = {2022},
date = {2022-04-01},
journal = {The Science of the total environment},
volume = {815},
pages = {151967},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) may interact with multiple intracellular receptors and related signaling pathways. We comprehensively evaluated the toxicity profiles of six environmentally relevant PAHs differing in structure, genotoxicity and their ability to activate the aryl hydrocarbon receptor (AhR). We focused particularly on their impact on intracellular hormone-, xenobiotic- and lipid-sensing receptors, as well as on cellular stress markers, combining a battery of human reporter gene assays and qRT-PCR evaluation of endogenous gene expression in human hepatocyte-like HepaRG cells, with LC/MS-MS analysis of cellular sphingolipids. The effects of PAHs included: activation of estrogen receptor α (in case of fluoranthene (Fla), pyrene (Pyr), benz[a]anthracene (BaA), benzo[a]pyrene (BaP)), suppression of androgen receptor activity (Fla, BaA, BaP and benzo[k]fluoranthene (BkF)), enhancement of dexamethasone-induced glucocorticoid receptor activity (chrysene (Chry), BaA, and BaP), and potentiation of triiodothyronine-induced thyroid receptor α activity (all tested PAHs). PAHs also induced transcription of endogenous gene targets of constitutive androstane receptor (Fla, Pyr), or repression of target genes of pregnane X receptor and peroxisome proliferator-activated receptor α (in case of the AhR-activating PAHs - Chry, BaA, BaP, and BkF) in HepaRG cells. In the same cell model, the AhR agonists reduced the expression of glucose metabolism genes (PCK1, G6PC and PDK4), and they up-regulated levels of glucosylceramides, together with a concomitant induction of expression of UGCG, glucosylceramide synthesis enzyme. Finally, both BaP and BkF were found to induce expression of early stress and genotoxicity markers: ATF3, EGR1, GDF15, CDKN1A/p21, and GADD45A mRNAs, while BaP alone increased levels of IL-6 mRNA. Overall, whereas low-molecular-weight PAHs exerted significant effects on nuclear receptors (with CYP2B6 induction observed already at nanomolar concentrations), the AhR activation by 4-ring and 5-ring PAHs appeared to be a key mechanism underlying their impact on nuclear receptor signaling, endogenous metabolism and induction of early stress and genotoxicity markers.},
note = {Place: Netherlands},
keywords = {*Polycyclic Aromatic Hydrocarbons/toxicity, Aryl Hydrocarbon/genetics/metabolism, Benzo(a)pyrene, Cellular stress response, Cytoplasmic and Nuclear/genetics, Energy Metabolism, Humans, Nuclear receptors, Polycyclic aromatic hydrocarbons, Receptors, Signal Transduction, Sphingolipids, Xenobiotics},
pubstate = {published},
tppubtype = {article}
}