2023
Holme, Jørn A.; Vondráček, Jan; Machala, Miroslav; Lagadic-Gossmann, Dominique; Vogel, Christoph F. A.; Ferrec, Eric Le; Sparfel, Lydie; Øvrevik, Johan
In: Biochemical pharmacology, vol. 216, pp. 115801, 2023, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Air Pollutants/toxicity, *Lung Neoplasms/chemically induced/genetics, *Polycyclic Aromatic Hydrocarbons/toxicity, Air pollution, Aryl Hydrocarbon/genetics, Carcinogenesis, Diesel exhaust, Environmental Monitoring, Genotoxicity, Humans, Inflammation, Occupational exposure, Particulate Matter/toxicity, Receptors, Smoking, Tumor metastasis, Tumor microenvironment, Tumor promotion
@article{holme_lung_2023,
title = {Lung cancer associated with combustion particles and fine particulate matter (PM(2.5)) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR).},
author = {Jørn A. Holme and Jan Vondráček and Miroslav Machala and Dominique Lagadic-Gossmann and Christoph F. A. Vogel and Eric Le Ferrec and Lydie Sparfel and Johan Øvrevik},
doi = {10.1016/j.bcp.2023.115801},
issn = {1873-2968 0006-2952},
year = {2023},
date = {2023-10-01},
journal = {Biochemical pharmacology},
volume = {216},
pages = {115801},
abstract = {Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM(2.5)), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM(2.5) exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM(2.5) represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM(2.5), whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.},
note = {Place: England},
keywords = {*Air Pollutants/toxicity, *Lung Neoplasms/chemically induced/genetics, *Polycyclic Aromatic Hydrocarbons/toxicity, Air pollution, Aryl Hydrocarbon/genetics, Carcinogenesis, Diesel exhaust, Environmental Monitoring, Genotoxicity, Humans, Inflammation, Occupational exposure, Particulate Matter/toxicity, Receptors, Smoking, Tumor metastasis, Tumor microenvironment, Tumor promotion},
pubstate = {published},
tppubtype = {article}
}
2015
Pálková, Lenka; Vondráček, Jan; Trilecová, Lenka; Ciganek, Miroslav; Pěnčíková, Kateřina; Neča, Jiří; Milcová, Alena; Topinka, Jan; Machala, Miroslav
In: Toxicology in vitro : an international journal published in association with BIBRA, vol. 29, no. 3, pp. 438–448, 2015, ISSN: 1879-3177 0887-2333, (Place: England).
Abstract | Links | BibTeX | Tags: Air Pollutants/*toxicity, Air pollution, Animals, Apoptosis, Apoptosis/drug effects, Aryl Hydrocarbon/*drug effects, Cell Cycle/drug effects, Cell Death/drug effects, Cell Proliferation, DNA adducts, DNA Damage, DNA damage response, Liver/*pathology, Lung/*pathology, Male, Mutagens/*toxicity, PAHs, Particulate Matter/*toxicity, Prostate/*pathology, Rats, Receptors, SRM 1650b, Vehicle Emissions/*toxicity
@article{palkova_aryl_2015,
title = {The aryl hydrocarbon receptor-mediated and genotoxic effects of fractionated extract of standard reference diesel exhaust particle material in pulmonary, liver and prostate cells.},
author = {Lenka Pálková and Jan Vondráček and Lenka Trilecová and Miroslav Ciganek and Kateřina Pěnčíková and Jiří Neča and Alena Milcová and Jan Topinka and Miroslav Machala},
doi = {10.1016/j.tiv.2014.12.002},
issn = {1879-3177 0887-2333},
year = {2015},
date = {2015-04-01},
journal = {Toxicology in vitro : an international journal published in association with BIBRA},
volume = {29},
number = {3},
pages = {438–448},
abstract = {Diesel exhaust particles (DEP) and the associated complex mixtures of organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), or their derivatives, have been suggested to exert deleterious effects on human health. We used a set of defined cellular models representing liver, lung and prostate tissues, in order to compare non-genotoxic and genotoxic effects of crude and fractionated extract of a standard reference DEP material - SRM 1650b. We focused on the aryl hydrocarbon receptor (AhR)-mediated activity, modulation of cell proliferation, formation of DNA adducts, oxidative DNA damage, and induction of DNA damage responses, including evaluation of apoptosis, and phosphorylation of p53 tumor suppressor and checkpoint kinases (Chk). Both PAHs and the polar aromatic compounds contributed to the AhR-mediated activity of DEP-associated organic pollutants. The principal identified AhR agonists included benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene, chrysene and several non-priority PAHs, including benzochrysenes and methylated PAHs. In contrast to PAHs, polar compounds contributed more significantly to overall formation of DNA adducts associated with phosphorylation of p53, Chk1 or Chk2, and partly with apoptosis. Therefore, more attention should be paid to identification of DEP-associated polar organic compounds, contributing to the AhR activation and cytotoxic/genotoxic effects of complex airborne mixtures of organic contaminants produced by diesel engines.},
note = {Place: England},
keywords = {Air Pollutants/*toxicity, Air pollution, Animals, Apoptosis, Apoptosis/drug effects, Aryl Hydrocarbon/*drug effects, Cell Cycle/drug effects, Cell Death/drug effects, Cell Proliferation, DNA adducts, DNA Damage, DNA damage response, Liver/*pathology, Lung/*pathology, Male, Mutagens/*toxicity, PAHs, Particulate Matter/*toxicity, Prostate/*pathology, Rats, Receptors, SRM 1650b, Vehicle Emissions/*toxicity},
pubstate = {published},
tppubtype = {article}
}