2022
Karasová, Martina; Procházková, Jiřina; Tylichová, Zuzana; Fedr, Radek; Ciganek, Miroslav; Machala, Miroslav; Dvořák, Zdeněk; Vyhlídalová, Barbora; Zůvalová, Iveta; Ehrmann, Jiří; Bouchal, Jan; Andrysík, Zdeněk; Vondráček, Jan
In: Cancers, vol. 14, no. 17, 2022, ISSN: 2072-6694, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: AhR, Akt pathway, colon cancer cells, fatty acid synthesis, metabolism, proliferation
@article{karasova_inhibition_2022,
title = {Inhibition of Aryl Hydrocarbon Receptor (AhR) Expression Disrupts Cell Proliferation and Alters Energy Metabolism and Fatty Acid Synthesis in Colon Cancer Cells.},
author = {Martina Karasová and Jiřina Procházková and Zuzana Tylichová and Radek Fedr and Miroslav Ciganek and Miroslav Machala and Zdeněk Dvořák and Barbora Vyhlídalová and Iveta Zůvalová and Jiří Ehrmann and Jan Bouchal and Zdeněk Andrysík and Jan Vondráček},
doi = {10.3390/cancers14174245},
issn = {2072-6694},
year = {2022},
date = {2022-08-01},
journal = {Cancers},
volume = {14},
number = {17},
abstract = {The aryl hydrocarbon receptor (AhR) plays a wide range of physiological roles in cellular processes such as proliferation, migration or control of immune responses. Several studies have also indicated that AhR might contribute to the regulation of energy balance or cellular metabolism. We observed that the AhR is upregulated in tumor epithelial cells derived from colon cancer patients. Using wild-type and the corresponding AhR knockout (AhR KO) variants of human colon cancer cell lines HCT116 and HT-29, we analyzed possible role(s) of the AhR in cell proliferation and metabolism, with a focus on regulation of the synthesis of fatty acids (FAs). We observed a decreased proliferation rate in the AhR KO cells, which was accompanied with altered cell cycle progression, as well as a decreased ATP production. We also found reduced mRNA levels of key enzymes of the FA biosynthetic pathway in AhR KO colon cancer cells, in particular of stearoyl-CoA desaturase 1 (SCD1). The loss of AhR was also associated with reduced expression and/or activity of components of the PI3K/Akt pathway, which controls lipid metabolism, and other lipogenic transcriptional regulators, such as sterol regulatory element binding transcription factor 1 (SREBP1). Together, our data indicate that disruption of AhR activity in colon tumor cells may, likely in a cell-specific manner, limit their proliferation, which could be linked with a suppressive effect on their endogenous FA metabolism. More attention should be paid to potential mechanistic links between overexpressed AhR and colon tumor cell metabolism.},
note = {Place: Switzerland},
keywords = {AhR, Akt pathway, colon cancer cells, fatty acid synthesis, metabolism, proliferation},
pubstate = {published},
tppubtype = {article}
}
Lustig, Robert H.; Collier, David; Kassotis, Christopher; Roepke, Troy A.; Kim, Min Ji; Blanc, Etienne; Barouki, Robert; Bansal, Amita; Cave, Matthew C.; Chatterjee, Saurabh; Choudhury, Mahua; Gilbertson, Michael; Lagadic-Gossmann, Dominique; Howard, Sarah; Lind, Lars; Tomlinson, Craig R.; Vondracek, Jan; Heindel, Jerrold J.
Obesity I: Overview and molecular and biochemical mechanisms. Journal Article
In: Biochemical pharmacology, vol. 199, pp. 115012, 2022, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Leptin/metabolism, *Obesity/metabolism, Adipocytes/metabolism, Adipose Tissue, Adipose Tissue/metabolism, Energy balance, Energy Metabolism/physiology, Hormone receptors, Humans, Insulin/metabolism, metabolism, Microbiome, Obesity
@article{lustig_obesity_2022,
title = {Obesity I: Overview and molecular and biochemical mechanisms.},
author = {Robert H. Lustig and David Collier and Christopher Kassotis and Troy A. Roepke and Min Ji Kim and Etienne Blanc and Robert Barouki and Amita Bansal and Matthew C. Cave and Saurabh Chatterjee and Mahua Choudhury and Michael Gilbertson and Dominique Lagadic-Gossmann and Sarah Howard and Lars Lind and Craig R. Tomlinson and Jan Vondracek and Jerrold J. Heindel},
doi = {10.1016/j.bcp.2022.115012},
issn = {1873-2968 0006-2952},
year = {2022},
date = {2022-05-01},
journal = {Biochemical pharmacology},
volume = {199},
pages = {115012},
abstract = {Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY(3-36)) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.},
note = {Place: England},
keywords = {*Leptin/metabolism, *Obesity/metabolism, Adipocytes/metabolism, Adipose Tissue, Adipose Tissue/metabolism, Energy balance, Energy Metabolism/physiology, Hormone receptors, Humans, Insulin/metabolism, metabolism, Microbiome, Obesity},
pubstate = {published},
tppubtype = {article}
}
2016
Kremserova, Silvie; Perecko, Tomas; Soucek, Karel; Klinke, Anna; Baldus, Stephan; Eiserich, Jason P.; Kubala, Lukas
Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation. Journal Article
In: Oxidative medicine and cellular longevity, vol. 2016, pp. 5219056, 2016, ISSN: 1942-0994 1942-0900, (Place: United States).
Abstract | Links | BibTeX | Tags: Acute Disease, Acute Lung Injury/complications/genetics, Animals, Inborn Errors/*complications, Inbred C57BL, Knockout, Leukocyte Disorders/*complications/*genetics, Lipopolysaccharides, Male, metabolism, Mice, Neutrophils/*pathology, Peroxidase/deficiency/genetics, Pneumonia/chemically induced/*complications/genetics
@article{kremserova_lung_2016,
title = {Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation.},
author = {Silvie Kremserova and Tomas Perecko and Karel Soucek and Anna Klinke and Stephan Baldus and Jason P. Eiserich and Lukas Kubala},
doi = {10.1155/2016/5219056},
issn = {1942-0994 1942-0900},
year = {2016},
date = {2016-01-01},
journal = {Oxidative medicine and cellular longevity},
volume = {2016},
pages = {5219056},
abstract = {Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site.},
note = {Place: United States},
keywords = {Acute Disease, Acute Lung Injury/complications/genetics, Animals, Inborn Errors/*complications, Inbred C57BL, Knockout, Leukocyte Disorders/*complications/*genetics, Lipopolysaccharides, Male, metabolism, Mice, Neutrophils/*pathology, Peroxidase/deficiency/genetics, Pneumonia/chemically induced/*complications/genetics},
pubstate = {published},
tppubtype = {article}
}
2013
Smerdová, Lenka; Neča, Jiří; Svobodová, Jana; Topinka, Jan; Schmuczerová, Jana; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Toxicology, vol. 314, no. 1, pp. 30–38, 2013, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon Hydroxylases/*biosynthesis/genetics, ATP Binding Cassette Transporter, Benzo(a)pyrene/*metabolism, Blotting, Cell Line, Conditioned, Culture Media, CYP1B1, Cytochrome P-450 CYP1B1, Cytokines/metabolism, DNA adducts, Inflammation, Inflammation Mediators/*pharmacology, metabolism, Oxidoreductases Acting on Aldehyde or Oxo Group Donors/biosynthesis/genetics, Polycyclic aromatic hydrocarbons, Pulmonary Alveoli/cytology/drug effects/*metabolism, Rats, Real-Time Polymerase Chain Reaction, RNA, Small Interfering, Subfamily B/biosynthesis/genetics, Tandem Mass Spectrometry, Transfection, Western
@article{smerdova_inflammatory_2013,
title = {Inflammatory mediators accelerate metabolism of benzo[a]pyrene in rat alveolar type II cells: the role of enhanced cytochrome P450 1B1 expression.},
author = {Lenka Smerdová and Jiří Neča and Jana Svobodová and Jan Topinka and Jana Schmuczerová and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.tox.2013.09.001},
issn = {1879-3185 0300-483X},
year = {2013},
date = {2013-12-01},
journal = {Toxicology},
volume = {314},
number = {1},
pages = {30–38},
abstract = {Long-term deregulated inflammation represents one of the key factors contributing to lung cancer etiology. Previously, we have observed that tumor necrosis factor-α (TNF-α), a major pro-inflammatory cytokine, enhances genotoxicity of benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon, in rat lung epithelial RLE-6TN cells, a model of alveolar type II cells. Therefore, we analyzed B[a]P metabolism in RLE-6TN cells under inflammatory conditions, simulated using either recombinant TNF-α, or a mixture of inflammatory mediators derived from activated alveolar macrophage cell line. Inflammatory conditions significantly accelerated BaP metabolism, as evidenced by decreased levels of both parent B[a]P and its metabolites. TNF-α altered production of the metabolites associated with dihydrodiol-epoxide and radical cation pathways of B[a]P metabolism, especially B[a]P-dihydrodiols, and B[a]P-diones. We then evaluated the role of cytochrome P450 1B1 (CYP1B1), which is strongly up-regulated in cells treated with B[a]P under inflammatory conditions, in the observed effects. The siRNA-mediated CYP1B1 knock-down increased levels of B[a]P and reduced formation of stable DNA adducts, thus confirming the essential role of CYP1B1 in B[a]P metabolism under inflammatory conditions. TNF-α also reduced expression of aldo-keto reductase 1C14, which may compete with CYP1B1 for B[a]P-7,8-dihydrodiol and divert it from the formation of ultimate B[a]P dihydrodiol epoxide. Together, the present data suggests that the CYP1B1-catalyzed metabolism of polycyclic aromatic hydrocarbons might contribute to their enhanced bioactivation and genotoxic effects under inflammatory conditions.},
note = {Place: Ireland},
keywords = {Animals, Aryl Hydrocarbon Hydroxylases/*biosynthesis/genetics, ATP Binding Cassette Transporter, Benzo(a)pyrene/*metabolism, Blotting, Cell Line, Conditioned, Culture Media, CYP1B1, Cytochrome P-450 CYP1B1, Cytokines/metabolism, DNA adducts, Inflammation, Inflammation Mediators/*pharmacology, metabolism, Oxidoreductases Acting on Aldehyde or Oxo Group Donors/biosynthesis/genetics, Polycyclic aromatic hydrocarbons, Pulmonary Alveoli/cytology/drug effects/*metabolism, Rats, Real-Time Polymerase Chain Reaction, RNA, Small Interfering, Subfamily B/biosynthesis/genetics, Tandem Mass Spectrometry, Transfection, Western},
pubstate = {published},
tppubtype = {article}
}