2022
Lenárt, Sára; Lenárt, Peter; Knopfová, Lucia; Kotasová, Hana; Pelková, Vendula; Sedláková, Veronika; Vacek, Ondřej; Pokludová, Jana; Čan, Vladimír; Šmarda, Jan; Souček, Karel; Hampl, Aleš; Beneš, Petr
TACSTD2 upregulation is an early reaction to lung infection. Journal Article
In: Scientific reports, vol. 12, no. 1, pp. 9583, 2022, ISSN: 2045-2322, (Place: England).
Abstract | Links | BibTeX | Tags: *Antigens, *Cell Adhesion Molecules/metabolism, Animals, Epithelial Cells/metabolism, Lung/metabolism, Neoplasm/metabolism, Up-Regulation
@article{lenart_tacstd2_2022,
title = {TACSTD2 upregulation is an early reaction to lung infection.},
author = {Sára Lenárt and Peter Lenárt and Lucia Knopfová and Hana Kotasová and Vendula Pelková and Veronika Sedláková and Ondřej Vacek and Jana Pokludová and Vladimír Čan and Jan Šmarda and Karel Souček and Aleš Hampl and Petr Beneš},
doi = {10.1038/s41598-022-13637-9},
issn = {2045-2322},
year = {2022},
date = {2022-06-01},
journal = {Scientific reports},
volume = {12},
number = {1},
pages = {9583},
abstract = {TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody-drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.},
note = {Place: England},
keywords = {*Antigens, *Cell Adhesion Molecules/metabolism, Animals, Epithelial Cells/metabolism, Lung/metabolism, Neoplasm/metabolism, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
2018
Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel
In: Cytometry. Part A : the journal of the International Society for Analytical Cytology, vol. 93, no. 9, pp. 941–951, 2018, ISSN: 1552-4930 1552-4922, (Place: United States).
Abstract | Links | BibTeX | Tags: anti-fibroblast, Biomarkers/*metabolism, Breast Neoplasms/metabolism, cancer-associated fibroblasts, Cell Line, Endopeptidases, Epithelial Cell Adhesion Molecule/metabolism, Epithelial Cells/metabolism, Epithelial-Mesenchymal Transition/*physiology, epithelial-to-mesenchymal transition, Female, fibroblast activation protein α, fibroblast surface protein, Fibroblasts/*metabolism, Gelatinases/*metabolism, Humans, Leukocyte Common Antigens/metabolism, Male, Membrane Proteins/*metabolism, PC-3 Cells, Platelet Endothelial Cell Adhesion Molecule-1/metabolism, Prostatic Neoplasms/metabolism, Serine Endopeptidases/*metabolism, Transforming Growth Factor beta1/metabolism, Tumor
@article{kahounova_fibroblast_2018,
title = {The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.},
author = {Zuzana Kahounová and Daniela Kurfürstová and Jan Bouchal and Gvantsa Kharaishvili and Jiří Navrátil and Ján Remšík and Šárka Šimečková and Vladimír Študent and Alois Kozubík and Karel Souček},
doi = {10.1002/cyto.a.23101},
issn = {1552-4930 1552-4922},
year = {2018},
date = {2018-07-01},
journal = {Cytometry. Part A : the journal of the International Society for Analytical Cytology},
volume = {93},
number = {9},
pages = {941–951},
abstract = {The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (EpCAM) identification of fibroblasts from breast and prostate tumor tissues is advised. © 2017 International Society for Advancement of Cytometry.},
note = {Place: United States},
keywords = {anti-fibroblast, Biomarkers/*metabolism, Breast Neoplasms/metabolism, cancer-associated fibroblasts, Cell Line, Endopeptidases, Epithelial Cell Adhesion Molecule/metabolism, Epithelial Cells/metabolism, Epithelial-Mesenchymal Transition/*physiology, epithelial-to-mesenchymal transition, Female, fibroblast activation protein α, fibroblast surface protein, Fibroblasts/*metabolism, Gelatinases/*metabolism, Humans, Leukocyte Common Antigens/metabolism, Male, Membrane Proteins/*metabolism, PC-3 Cells, Platelet Endothelial Cell Adhesion Molecule-1/metabolism, Prostatic Neoplasms/metabolism, Serine Endopeptidases/*metabolism, Transforming Growth Factor beta1/metabolism, Tumor},
pubstate = {published},
tppubtype = {article}
}
2010
Soucek, Karel; Slabáková, Eva; Ovesná, Petra; Malenovská, Alice; Kozubík, Alois; Hampl, Ales
Growth/differentiation factor-15 is an abundant cytokine in human seminal plasma. Journal Article
In: Human reproduction (Oxford, England), vol. 25, no. 12, pp. 2962–2971, 2010, ISSN: 1460-2350 0268-1161, (Place: England).
Abstract | Links | BibTeX | Tags: Adult, Apoptosis/drug effects, CD4-Positive T-Lymphocytes/metabolism, Cell Proliferation/drug effects, Cell Survival/drug effects, Epithelial Cells/metabolism, Female, Forkhead Transcription Factors/biosynthesis, Growth Differentiation Factor 15/*physiology, Humans, Interleukin-2 Receptor alpha Subunit/metabolism, Leukocytes, Male, Middle Aged, Mononuclear/drug effects, Semen Analysis, Semen/*metabolism, Spermatozoa
@article{soucek_growthdifferentiation_2010,
title = {Growth/differentiation factor-15 is an abundant cytokine in human seminal plasma.},
author = {Karel Soucek and Eva Slabáková and Petra Ovesná and Alice Malenovská and Alois Kozubík and Ales Hampl},
doi = {10.1093/humrep/deq264},
issn = {1460-2350 0268-1161},
year = {2010},
date = {2010-12-01},
journal = {Human reproduction (Oxford, England)},
volume = {25},
number = {12},
pages = {2962–2971},
abstract = {BACKGROUND: Transforming growth factor-β cytokines have various biological effects in female reproductive tissue, including modulation of inflammatory response and induction of immune tolerance to seminal antigens in the reproductive tract. However, no studies have analyzed the presence of growth/differentiation factor-15 (GDF-15/macrophage inhibitory cytokine-1) in seminal fluid or demonstrated the quantity and form of GDF-15, its possible role or the relationship between its concentration and semen quality. METHODS: The form and the concentration of GDF-15 were determined in 53 seminal plasma samples of both fertile and infertile men by ELISA and western blot. The sperm cells of three volunteers were treated with recombinant GDF-15, and cell viability and apoptosis were assessed by flow cytometry. The effect of GDF-15 on vaginal epithelial cells and peripheral blood mononuclear cells (PBMCs) was analyzed by quantitative RT-PCR. RESULTS: The GDF-15 concentration in seminal plasma ranged from 0.2 to 6.6 μg/ml as determined by ELISA. Western blot analysis revealed that GDF-15 is present in the active form. In vitro cultivation of sperm cells with GDF-15 did not affect their viability or rates of apoptosis; however, it did inhibit proliferation of PBMCs and induce expression of FOXP3 in CD4+CD25+ cells. CONCLUSIONS: To the best of our knowledge, this is the first demonstration that GDF-15 is an abundant cytokine in seminal plasma, although its concentration is not associated with semen quality or the fertility/infertility status of the donors. Moreover, our data show that GDF-15 displays immunosuppressive characteristics.},
note = {Place: England},
keywords = {Adult, Apoptosis/drug effects, CD4-Positive T-Lymphocytes/metabolism, Cell Proliferation/drug effects, Cell Survival/drug effects, Epithelial Cells/metabolism, Female, Forkhead Transcription Factors/biosynthesis, Growth Differentiation Factor 15/*physiology, Humans, Interleukin-2 Receptor alpha Subunit/metabolism, Leukocytes, Male, Middle Aged, Mononuclear/drug effects, Semen Analysis, Semen/*metabolism, Spermatozoa},
pubstate = {published},
tppubtype = {article}
}