2020
Kauerová, Tereza; Goněc, Tomáš; Jampílek, Josef; Hafner, Susanne; Gaiser, Ann-Kathrin; Syrovets, Tatiana; Fedr, Radek; Souček, Karel; Kollar, Peter
Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis. Journal Article
In: International journal of molecular sciences, vol. 21, no. 10, 2020, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: Anilides/chemistry/*pharmacology, Antineoplastic Agents/chemistry/pharmacology, antiproliferative effect, Apoptosis, Apoptosis/*drug effects, Cell Cycle, Cell Cycle/drug effects, Cell Proliferation/*drug effects, Cell Survival/drug effects, Humans, hydroxynaphthalene carboxamides, MCF-7 Cells, Membrane Potential, Mitochondria/*drug effects/metabolism, Mitochondrial/drug effects, Molecular Structure, Naphthols/*chemistry, Reactive Oxygen Species/metabolism, salicylanilides, Salicylanilides/chemistry/pharmacology, Structure-Activity Relationship, Superoxides/metabolism, THP-1 Cells
@article{kauerova_ring-substituted_2020,
title = {Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis.},
author = {Tereza Kauerová and Tomáš Goněc and Josef Jampílek and Susanne Hafner and Ann-Kathrin Gaiser and Tatiana Syrovets and Radek Fedr and Karel Souček and Peter Kollar},
doi = {10.3390/ijms21103416},
issn = {1422-0067},
year = {2020},
date = {2020-05-01},
journal = {International journal of molecular sciences},
volume = {21},
number = {10},
abstract = {Ring-substituted 1-hydroxynaphthalene-2-carboxanilides were previously investigated for their antimycobacterial properties. In our study, we have shown their antiproliferative and cell death-inducing effects in cancer cell lines. Cell proliferation and viability were assessed by WST-1 assay and a dye exclusion test, respectively. Cell cycle distribution, phosphatidylserine externalization, levels of reactive oxygen or nitrogen species (RONS), mitochondrial membrane depolarization, and release of cytochrome c were estimated by flow cytometry. Levels of regulatory proteins were determined by Western blotting. Our data suggest that the ability to inhibit the proliferation of THP-1 or MCF-7 cells might be referred to meta- or para-substituted derivatives with electron-withdrawing groups -F, -Br, or -CF(3) at anilide moiety. This effect was accompanied by accumulation of cells in G1 phase. Compound 10 also induced apoptosis in THP-1 cells in association with a loss of mitochondrial membrane potential and production of mitochondrial superoxide. Our study provides a new insight into the action of salicylanilide derivatives, hydroxynaphthalene carboxamides, in cancer cells. Thus, their structure merits further investigation as a model moiety of new small-molecule compounds with potential anticancer properties.},
note = {Place: Switzerland},
keywords = {Anilides/chemistry/*pharmacology, Antineoplastic Agents/chemistry/pharmacology, antiproliferative effect, Apoptosis, Apoptosis/*drug effects, Cell Cycle, Cell Cycle/drug effects, Cell Proliferation/*drug effects, Cell Survival/drug effects, Humans, hydroxynaphthalene carboxamides, MCF-7 Cells, Membrane Potential, Mitochondria/*drug effects/metabolism, Mitochondrial/drug effects, Molecular Structure, Naphthols/*chemistry, Reactive Oxygen Species/metabolism, salicylanilides, Salicylanilides/chemistry/pharmacology, Structure-Activity Relationship, Superoxides/metabolism, THP-1 Cells},
pubstate = {published},
tppubtype = {article}
}