2020
Nekvindova, Jana; Mrkvicova, Alena; Zubanova, Veronika; Vaculova, Alena Hyrslova; Anzenbacher, Pavel; Soucek, Pavel; Radova, Lenka; Slaby, Ondrej; Kiss, Igor; Vondracek, Jan; Spicakova, Alena; Bohovicova, Lucia; Fabian, Pavel; Kala, Zdenek; Palicka, Vladimir
Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450. Journal Article
In: Biochemical pharmacology, vol. 177, pp. 113912, 2020, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Gene Expression Regulation, *Transcriptome, Adult, Aged, Carcinoma, Cohort Studies, CYP, Cytochrome P-450 Enzyme System/*genetics, Cytochrome P450, Cytoplasmic and Nuclear/genetics/metabolism, Drug metabolism, Enzymologic, Female, Gene Expression, Gene Expression Profiling, Hepatocellular carcinoma, Hepatocellular/*enzymology/pathology, Hepatocytes/metabolism, Humans, Inactivation, Liver Neoplasms/*enzymology/pathology, Liver/metabolism, Male, Metabolic/genetics, Middle Aged, Neoplasm Grading, Non-coding RNA, Receptors
@article{nekvindova_hepatocellular_2020,
title = {Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450.},
author = {Jana Nekvindova and Alena Mrkvicova and Veronika Zubanova and Alena Hyrslova Vaculova and Pavel Anzenbacher and Pavel Soucek and Lenka Radova and Ondrej Slaby and Igor Kiss and Jan Vondracek and Alena Spicakova and Lucia Bohovicova and Pavel Fabian and Zdenek Kala and Vladimir Palicka},
doi = {10.1016/j.bcp.2020.113912},
issn = {1873-2968 0006-2952},
year = {2020},
date = {2020-07-01},
journal = {Biochemical pharmacology},
volume = {177},
pages = {113912},
abstract = {Hepatocellular carcinoma (HCC) remains a highly prevalent and deadly disease, being among the top causes of cancer-related deaths worldwide. Despite the fact that the liver is the major site of biotransformation, studies on drug metabolizing enzymes in HCC are scarce. It is known that malignant transformation of hepatocytes leads to a significant alteration of their metabolic functions and overall deregulation of gene expression. Advanced stages of the disease are thus frequently associated with liver failure, and severe alteration of drug metabolism. However, the impact of dysregulation of metabolic enzymes on therapeutic efficacy and toxicity in HCC patients is largely unknown. Here we demonstrate a significant down-regulation in European Caucasian patients of cytochromes P450 (CYPs), the major xenobiotic-metabolizing enzymes, in HCC tumour samples as compared to their surrounding non-cancerous (reference) tissue. Moreover, we report for the first time the association of the unique CYP profiles with specific transcriptome changes, and interesting correlations with expression levels of nuclear receptors and with the histological grade of the tumours. Integrated analysis has suggested certain co-expression profiles of CYPs with lncRNAs that need to be further characterized. Patients with large tumours with down-regulated CYPs could be more vulnerable to drug toxicity; on the other hand, such tumours would eliminate drugs more slowly and should be more sensitive to pharmacotherapy (except in the case of pro-drugs where activation is necessary).},
note = {Place: England},
keywords = {*Gene Expression Regulation, *Transcriptome, Adult, Aged, Carcinoma, Cohort Studies, CYP, Cytochrome P-450 Enzyme System/*genetics, Cytochrome P450, Cytoplasmic and Nuclear/genetics/metabolism, Drug metabolism, Enzymologic, Female, Gene Expression, Gene Expression Profiling, Hepatocellular carcinoma, Hepatocellular/*enzymology/pathology, Hepatocytes/metabolism, Humans, Inactivation, Liver Neoplasms/*enzymology/pathology, Liver/metabolism, Male, Metabolic/genetics, Middle Aged, Neoplasm Grading, Non-coding RNA, Receptors},
pubstate = {published},
tppubtype = {article}
}
2017
Zapletal, Ondřej; Tylichová, Zuzana; Neča, Jiří; Kohoutek, Jiří; Machala, Miroslav; Milcová, Alena; Pokorná, Michaela; Topinka, Jan; Moyer, Mary Pat; Hofmanová, Jiřina; Kozubík, Alois; Vondráček, Jan
In: Archives of toxicology, vol. 91, no. 5, pp. 2135–2150, 2017, ISSN: 1432-0738 0340-5761, (Place: Germany).
Abstract | Links | BibTeX | Tags: Benzo(a)pyrene/metabolism/*pharmacokinetics, beta Catenin/metabolism, Butyrate, Butyric Acid/*pharmacology, Colon epithelial cells, Colon/*drug effects/metabolism, CYP1A1, Cytochrome P-450 CYP1A1/genetics/*metabolism, DNA adducts, DNA Adducts/drug effects/metabolism, Enhancer Elements, Genetic/drug effects, HCT116 Cells, Histone Deacetylase 1/antagonists & inhibitors/metabolism, Histone Deacetylase Inhibitors/pharmacology, Histone deacetylases, Histones/metabolism, HT29 Cells, Humans, Inactivation, Metabolic, Polycyclic aromatic hydrocarbons
@article{zapletal_butyrate_2017,
title = {Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzo[a]pyrene via its histone deacetylase activity in colon epithelial cell models.},
author = {Ondřej Zapletal and Zuzana Tylichová and Jiří Neča and Jiří Kohoutek and Miroslav Machala and Alena Milcová and Michaela Pokorná and Jan Topinka and Mary Pat Moyer and Jiřina Hofmanová and Alois Kozubík and Jan Vondráček},
doi = {10.1007/s00204-016-1887-4},
issn = {1432-0738 0340-5761},
year = {2017},
date = {2017-05-01},
journal = {Archives of toxicology},
volume = {91},
number = {5},
pages = {2135–2150},
abstract = {Butyrate, a short-chain fatty acid produced by fermentation of dietary fiber, is an important regulator of colonic epithelium homeostasis. In this study, we investigated the impact of this histone deacetylase (HDAC) inhibitor on expression/activity of cytochrome P450 family 1 (CYP1) and on metabolism of carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP), in colon epithelial cells. Sodium butyrate (NaBt) strongly potentiated the BaP-induced expression of CYP1A1 in human colon carcinoma HCT116 cells. It also co-stimulated the 7-ethoxyresorufin-O-deethylase (EROD) activity induced by the 2,3,7,8-tetrachlorodibenzo-p-dioxin, a prototypical ligand of the aryl hydrocarbon receptor. Up-regulation of CYP1A1 expression/activity corresponded with an enhanced metabolism of BaP and formation of covalent DNA adducts. NaBt significantly potentiated CYP1A1 induction and/or metabolic activation of BaP also in other human colon cell models, colon adenoma AA/C1 cells, colon carcinoma HT-29 cells, or in NCM460D cell line derived from normal colon mucosa. Our results suggest that the effects of NaBt were due to its impact on histone acetylation, because additional HDAC inhibitors (trichostatin A and suberanilohydroxamic acid) likewise increased both the induction of EROD activity and formation of covalent DNA adducts. NaBt-induced acetylation of histone H3 (at Lys14) and histone H4 (at Lys16), two histone modifications modulated during activation of CYP1A1 transcription, and it reduced binding of HDAC1 to the enhancer region of CYP1A1 gene. This in vitro study suggests that butyrate, through modulation of histone acetylation, may potentiate induction of CYP1A1 expression, which might in turn alter the metabolism of BaP within colon epithelial cells.},
note = {Place: Germany},
keywords = {Benzo(a)pyrene/metabolism/*pharmacokinetics, beta Catenin/metabolism, Butyrate, Butyric Acid/*pharmacology, Colon epithelial cells, Colon/*drug effects/metabolism, CYP1A1, Cytochrome P-450 CYP1A1/genetics/*metabolism, DNA adducts, DNA Adducts/drug effects/metabolism, Enhancer Elements, Genetic/drug effects, HCT116 Cells, Histone Deacetylase 1/antagonists & inhibitors/metabolism, Histone Deacetylase Inhibitors/pharmacology, Histone deacetylases, Histones/metabolism, HT29 Cells, Humans, Inactivation, Metabolic, Polycyclic aromatic hydrocarbons},
pubstate = {published},
tppubtype = {article}
}