2019
Svobodová, Jana; Procházková, Jiřina; Kabátková, Markéta; Krkoška, Martin; Šmerdová, Lenka; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors. Journal Article
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 172, no. 2, pp. 368–384, 2019, ISSN: 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: *Models, Adaptor Proteins, Apoptosis, Apoptosis/*drug effects/genetics, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Biological, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects/genetics, Gene Expression/drug effects, HepaRG cells, Hippo signaling, Humans, Liver/*drug effects/pathology, Polychlorinated Dibenzodioxins/*toxicity, Receptors, RNA, Signal Transducing/genetics, Signal Transduction, Small Interfering/genetics, Stem Cells/*drug effects/pathology, Trans-Activators/genetics, Transcription Factors/genetics, Transcriptional Coactivator with PDZ-Binding Motif Proteins, Transfection, YAP-Signaling Proteins
@article{svobodova_2378-tetrachlorodibenzo-p-dioxin_2019,
title = {2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors.},
author = {Jana Svobodová and Jiřina Procházková and Markéta Kabátková and Martin Krkoška and Lenka Šmerdová and Helena Líbalová and Jan Topinka and Jiří Kléma and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1093/toxsci/kfz202},
issn = {1096-0929},
year = {2019},
date = {2019-12-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {172},
number = {2},
pages = {368–384},
abstract = {The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.},
note = {Place: United States},
keywords = {*Models, Adaptor Proteins, Apoptosis, Apoptosis/*drug effects/genetics, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Biological, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects/genetics, Gene Expression/drug effects, HepaRG cells, Hippo signaling, Humans, Liver/*drug effects/pathology, Polychlorinated Dibenzodioxins/*toxicity, Receptors, RNA, Signal Transducing/genetics, Signal Transduction, Small Interfering/genetics, Stem Cells/*drug effects/pathology, Trans-Activators/genetics, Transcription Factors/genetics, Transcriptional Coactivator with PDZ-Binding Motif Proteins, Transfection, YAP-Signaling Proteins},
pubstate = {published},
tppubtype = {article}
}
2018
Hýžd'alová, Martina; Pivnicka, Jakub; Zapletal, Ondrej; Vázquez-Gómez, Gerardo; Matthews, Jason; Neca, Jirí; Pencíková, Katerina; Machala, Miroslav; Vondrácek, Jan
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 165, no. 2, pp. 447–461, 2018, ISSN: 1096-0929 1096-6080, (Place: United States).
Abstract | Links | BibTeX | Tags: Aryl Hydrocarbon/genetics/*metabolism, Cell Culture Techniques, Cell Cycle/drug effects/genetics, Cell Proliferation/*drug effects/genetics, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1/genetics/metabolism, Endocrine Disruptors/metabolism/*toxicity, Estrogen/genetics/metabolism, Gene Expression/drug effects, Gene Knockdown Techniques, Genes, Genetic Vectors, Humans, MCF-7 Cells, Plasmids, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter, Transfection
@article{hyzdalova_aryl_2018,
title = {Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation.},
author = {Martina Hýžd'alová and Jakub Pivnicka and Ondrej Zapletal and Gerardo Vázquez-Gómez and Jason Matthews and Jirí Neca and Katerina Pencíková and Miroslav Machala and Jan Vondrácek},
doi = {10.1093/toxsci/kfy153},
issn = {1096-0929 1096-6080},
year = {2018},
date = {2018-10-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {165},
number = {2},
pages = {447–461},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that interact in a complex manner with both the aryl hydrocarbon receptor (AhR) and estrogen receptors (ER). Their potential endocrine-disrupting activities may depend on both inhibitory AhR-ER cross-talk and on AhR-dependent metabolic production of estrogenic PAH metabolites. Here, we analyzed the impact of AhR on estrogen-like effects of PAHs, such as benzo[a]pyrene (BaP), in particular, on control of cell cycle progression/cell proliferation. Using AhR knockout variant of estrogen-sensitive human breast cancer MCF-7 cells (MCF-7 AhRKO cells), we observed that the AhR-dependent control of cytochrome P450 family 1 (CYP1) expression played a major role in formation of estrogenic BaP metabolites, most notably 3-OH-BaP, which contributed to the ER-dependent induction of cell cycle progression/cell proliferation. Both BaP metabolism and the BaP-induced S-phase transition/cell proliferation were inhibited in MCF-7 AhRKO cells, whereas these cells remained sensitive towards both endogenous estrogen 17β-estradiol or hydroxylated BaP metabolites. BaP was found to increase the activity of ER-dependent luciferase reporter gene in wild-type MCF-7 cells; however, unlike its hydroxylated metabolite, BaP failed to stimulate luciferase activity in MCF-7 AhRKO cells. Similarly, estrogen-like effects of other known estrogenic PAHs, such as benz[a]anthracene or 3-methylcholanthrene, were diminished in MCF-7 AhRKO cells. Ectopic expression of human CYP1A1 and CYP1B1 enzymes partly restored both BaP metabolism and its effects on cell proliferation. Taken together, our data suggest that the AhR-dependent metabolism of PAHs contributes significantly to the impact of PAHs on cell proliferation in estrogen-sensitive cells.},
note = {Place: United States},
keywords = {Aryl Hydrocarbon/genetics/*metabolism, Cell Culture Techniques, Cell Cycle/drug effects/genetics, Cell Proliferation/*drug effects/genetics, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1/genetics/metabolism, Endocrine Disruptors/metabolism/*toxicity, Estrogen/genetics/metabolism, Gene Expression/drug effects, Gene Knockdown Techniques, Genes, Genetic Vectors, Humans, MCF-7 Cells, Plasmids, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter, Transfection},
pubstate = {published},
tppubtype = {article}
}