2019
Zapletal, Ondřej; Procházková, Jiřina; Dubec, Vít; Hofmanová, Jiřina; Kozubík, Alois; Vondráček, Jan
In: Toxicology, vol. 412, pp. 1–11, 2019, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Benzo(a)pyrene/*toxicity, Butyrate, Butyrates/*pharmacology, Carcinogens/*toxicity, Cell Line, Colon epithelium, Colon/cytology, Epithelial Cells/drug effects/metabolism, Humans, N-acetyltransferases, NAD(P)H:quinone oxidoreductase 1, Oxidoreductases/genetics/*metabolism, Polycyclic aromatic hydrocarbons, Transferases/genetics/*metabolism, UDP-glucuronosyltransferases, Xenobiotics/metabolism
@article{zapletal_butyrate_2019,
title = {Butyrate interacts with benzo[a]pyrene to alter expression and activities of xenobiotic metabolizing enzymes involved in metabolism of carcinogens within colon epithelial cell models.},
author = {Ondřej Zapletal and Jiřina Procházková and Vít Dubec and Jiřina Hofmanová and Alois Kozubík and Jan Vondráček},
doi = {10.1016/j.tox.2018.11.001},
issn = {1879-3185 0300-483X},
year = {2019},
date = {2019-01-01},
journal = {Toxicology},
volume = {412},
pages = {1–11},
abstract = {Butyrate helps to maintain colon homeostasis and exhibits chemopreventive effects in colon epithelium. We examined the interactive effects of butyrate and benzo[a]pyrene (BaP), dietary carcinogen, in regulation of expression of a panel of phase I and II xenobiotic metabolizing enzymes (XMEs) in human colon cells. In human colon carcinoma HCT-116 and HT-29 cell lines, butyrate alone increased mRNA levels of some enzymes, such as N-acetyltransferases (in particular NAT2). In combination with BaP, butyrate potentiated induction of cytochrome P450 family 1 enzymes (CYP1A1), aldo-keto reductases (AKR1C1) or UDP-glucuronosyltransferases (UGT1A1). There were some notable differences between cell lines, as butyrate potentiated induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) and UGT1A4 only in HCT-116 cells, and it even repressed AKR1C3 induction in HT-29 cells. Butyrate also promoted induction of CYP1, NQO1, NAT2, UGT1A1 or UGT1A4 in human colon Caco-2 cells, in a differentiation-dependent manner. Differentiated Caco-2 cells exhibited a higher inducibility of selected XME genes than undifferentiated cells. Butyrate increased induction of enzymatic activities of NATs, NQO1 and UGTs by BaP in HCT-116 and HT29 cells, whereas in differentiated Caco-2 cells it helped to increase only enzymatic activity of NQO1 and UGTs. Together, the present data suggest that butyrate may modulate expression/activities of several enzymes involved in metabolism of carcinogens in colon. In some cases (NAT2, UGT1 A1), this was linked to inhibition of histone deacetylases (HDAC), as confirmed by using HDAC inhibitor trichostatin A. These results may have implications for our understanding of the role of butyrate in regulation of XMEs and carcinogen metabolism in colon.},
note = {Place: Ireland},
keywords = {Benzo(a)pyrene/*toxicity, Butyrate, Butyrates/*pharmacology, Carcinogens/*toxicity, Cell Line, Colon epithelium, Colon/cytology, Epithelial Cells/drug effects/metabolism, Humans, N-acetyltransferases, NAD(P)H:quinone oxidoreductase 1, Oxidoreductases/genetics/*metabolism, Polycyclic aromatic hydrocarbons, Transferases/genetics/*metabolism, UDP-glucuronosyltransferases, Xenobiotics/metabolism},
pubstate = {published},
tppubtype = {article}
}
2014
Steinmetz, Birgit; Hackl, Hubert; Slabáková, Eva; Schwarzinger, Ilse; Smějová, Monika; Spittler, Andreas; Arbesu, Itziar; Shehata, Medhat; Souček, Karel; Wieser, Rotraud
The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid. Journal Article
In: Cell cycle (Georgetown, Tex.), vol. 13, no. 18, pp. 2931–2943, 2014, ISSN: 1551-4005 1538-4101, (Place: United States).
Abstract | Links | BibTeX | Tags: *Oncogenes, acute myeloid leukemia, acute promyelocytic leukemia, all-trans retinoic acid, AML, APL, Apoptosis, Apoptosis/drug effects, Ar, ATRA, ATRA regulation, Cell Cycle, Cell Cycle Checkpoints/drug effects, Cell Differentiation/drug effects, dimethyl sulfoxide, DMSO, DNA-Binding Proteins/genetics/*metabolism, Down-Regulation/drug effects, Em, Epithelial Cells/drug effects/metabolism, Er, EVI1, EVI1 modulation, EVI1 regulation, false discovery rate, FBS, FC, FDR, fetal bovine serum, fold change, GDF15, Gene Expression Profiling, Gene Knockdown Techniques, Genetic/*drug effects, GFP, green fluorescent protein, Growth Differentiation Factor 15/genetics/metabolism, HL-60 Cells, Humans, mcoEvi1, MDS, MDS1 and EVI1 Complex Locus Protein, murine codon optimized Evi1, myelodysplastic syndrome, Myeloid Cells/drug effects/*metabolism, myeloid differentiation, penicillin streptomycin glutamine, Proto-Oncogenes/genetics, PSG, RAR, RARE, Real-Time Polymerase Chain Reaction, Reproducibility of Results, retinoic acid receptor, retinoic acid response element, SE, standard error, Transcription, Transcription Factors/genetics/*metabolism, Tretinoin/*pharmacology
@article{steinmetz_oncogene_2014,
title = {The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid.},
author = {Birgit Steinmetz and Hubert Hackl and Eva Slabáková and Ilse Schwarzinger and Monika Smějová and Andreas Spittler and Itziar Arbesu and Medhat Shehata and Karel Souček and Rotraud Wieser},
doi = {10.4161/15384101.2014.946869},
issn = {1551-4005 1538-4101},
year = {2014},
date = {2014-01-01},
journal = {Cell cycle (Georgetown, Tex.)},
volume = {13},
number = {18},
pages = {2931–2943},
abstract = {The product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARβ gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-β superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects. The potential clinical implications of these findings are discussed.},
note = {Place: United States},
keywords = {*Oncogenes, acute myeloid leukemia, acute promyelocytic leukemia, all-trans retinoic acid, AML, APL, Apoptosis, Apoptosis/drug effects, Ar, ATRA, ATRA regulation, Cell Cycle, Cell Cycle Checkpoints/drug effects, Cell Differentiation/drug effects, dimethyl sulfoxide, DMSO, DNA-Binding Proteins/genetics/*metabolism, Down-Regulation/drug effects, Em, Epithelial Cells/drug effects/metabolism, Er, EVI1, EVI1 modulation, EVI1 regulation, false discovery rate, FBS, FC, FDR, fetal bovine serum, fold change, GDF15, Gene Expression Profiling, Gene Knockdown Techniques, Genetic/*drug effects, GFP, green fluorescent protein, Growth Differentiation Factor 15/genetics/metabolism, HL-60 Cells, Humans, mcoEvi1, MDS, MDS1 and EVI1 Complex Locus Protein, murine codon optimized Evi1, myelodysplastic syndrome, Myeloid Cells/drug effects/*metabolism, myeloid differentiation, penicillin streptomycin glutamine, Proto-Oncogenes/genetics, PSG, RAR, RARE, Real-Time Polymerase Chain Reaction, Reproducibility of Results, retinoic acid receptor, retinoic acid response element, SE, standard error, Transcription, Transcription Factors/genetics/*metabolism, Tretinoin/*pharmacology},
pubstate = {published},
tppubtype = {article}
}
2011
Trilecová, Lenka; Krčková, Simona; Marvanová, Soňa; Pĕnčíková, Kateřina; Krčmář, Pavel; Neča, Jiří; Hulinková, Petra; Pálková, Lenka; Ciganek, Miroslav; Milcová, Alena; Topinka, Jan; Vondráček, Jan; Machala, Miroslav
Toxic effects of methylated benzo[a]pyrenes in rat liver stem-like cells. Journal Article
In: Chemical research in toxicology, vol. 24, no. 6, pp. 866–876, 2011, ISSN: 1520-5010 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/*chemistry/*toxicity, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1, DNA Adducts/metabolism, Epithelial Cells/drug effects/metabolism, Gene Expression Regulation/drug effects, Liver/*cytology, Methylation, Mutagens/*chemistry/*toxicity, Oxidative Stress/drug effects, Protein Kinases/metabolism, Rats, Receptors, Stem Cells/drug effects/metabolism, Tumor, Tumor Suppressor Protein p53/metabolism
@article{trilecova_toxic_2011,
title = {Toxic effects of methylated benzo[a]pyrenes in rat liver stem-like cells.},
author = {Lenka Trilecová and Simona Krčková and Soňa Marvanová and Kateřina Pĕnčíková and Pavel Krčmář and Jiří Neča and Petra Hulinková and Lenka Pálková and Miroslav Ciganek and Alena Milcová and Jan Topinka and Jan Vondráček and Miroslav Machala},
doi = {10.1021/tx200049x},
issn = {1520-5010 0893-228X},
year = {2011},
date = {2011-06-01},
journal = {Chemical research in toxicology},
volume = {24},
number = {6},
pages = {866–876},
abstract = {The methylated benzo[a]pyrenes (MeBaPs) are present at significant levels in the environment, especially in the sediments contaminated by petrogenic PAHs. However, the existing data on their toxic effects in vitro and/or in vivo are still largely incomplete. Transcription factor AhR plays a key role in the metabolic activation of PAHs to genotoxic metabolites, but the AhR activation may also contribute to the tumor promoting effects of PAHs. In this study, the AhR-mediated activity of five selected MeBaP isomers was estimated in the DR-CALUX reporter gene assay performed in rat hepatoma cells. Detection of other effects, including induction of CYP1A1, CYP1B1, and AKR1C9 mRNAs, DNA adduct formation, production of reactive oxygen species, oxidation of deoxyguanosine, and cell cycle modulation and apoptosis, was performed in the rat liver epithelial WB-F344 cell line, a model of liver progenitor cells. We identified 1-MeBaP as the most potent inducer of AhR activation, stable DNA adduct formation, checkpoint kinase 1 and p53 phosphorylation, and apoptosis. These effects suggest that 1-MeBaP is a potent genotoxin eliciting a typical sequence of events ascribed to carcinogenic PAHs: induction of CYP1 enzymes, formation of high levels of DNA adducts, activation of DNA damage responses (including p53 phosphorylation), and cell death. In contrast, 10-MeBaP, representing BaP isomers substituted with the methyl group in the angular ring, elicited only low levels DNA adduct formation and apoptosis. Other MeBaPs under study also elicited strong apoptotic responses associated with DNA adduct formation as the prevalent mode of toxic action of these compounds in liver cells. MeBaPs induced a weak production of ROS, which did not lead to significant oxidative DNA damage. Importantly, 1-MeBaP and 3-MeBaP were found to be potent AhR agonists, one order of magnitude more potent than BaP, thus suggesting that the AhR-dependent modulations of gene expression, deregulation of cell survival mechanisms, and further nongenotoxic effects associated with AhR activation may further contribute to their tumor promotion and carcinogenicity.},
note = {Place: United States},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/*chemistry/*toxicity, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1, DNA Adducts/metabolism, Epithelial Cells/drug effects/metabolism, Gene Expression Regulation/drug effects, Liver/*cytology, Methylation, Mutagens/*chemistry/*toxicity, Oxidative Stress/drug effects, Protein Kinases/metabolism, Rats, Receptors, Stem Cells/drug effects/metabolism, Tumor, Tumor Suppressor Protein p53/metabolism},
pubstate = {published},
tppubtype = {article}
}
2005
Forejtníková, Hana; Lunerová, Kamila; Kubínová, Renata; Jankovská, Dagmar; Marek, Radek; Kares, Radovan; Suchý, Václav; Vondrácek, Jan; Machala, Miroslav
Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro. Journal Article
In: Toxicology, vol. 208, no. 1, pp. 81–93, 2005, ISSN: 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Carcinogens/metabolism/*toxicity, Cell Communication/drug effects/physiology, Cell Line, Chalcones/*pharmacology/*toxicity, Cytochrome P-450 Enzyme Inhibitors, Cytochrome P-450 Enzyme System/*metabolism, Dose-Response Relationship, Drug, Epithelial Cells/drug effects/metabolism, Gap Junctions/drug effects/metabolism/physiology, In Vitro Techniques, Lipid Peroxidation/drug effects, Liver/drug effects/enzymology, Liver/drug effects/ultrastructure, Male, Microsomes, Rats, Structure-Activity Relationship, Wistar
@article{forejtnikova_chemoprotective_2005,
title = {Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro.},
author = {Hana Forejtníková and Kamila Lunerová and Renata Kubínová and Dagmar Jankovská and Radek Marek and Radovan Kares and Václav Suchý and Jan Vondrácek and Miroslav Machala},
doi = {10.1016/j.tox.2004.11.011},
issn = {0300-483X},
year = {2005},
date = {2005-03-01},
journal = {Toxicology},
volume = {208},
number = {1},
pages = {81–93},
abstract = {Cytochrome P4501A activity, oxidative stress and inhibition of gap junctional intercellular communication (GJIC) are involved in metabolic activation of promutagens and tumor-promoting activity of various xenobiotics, and their prevention is considered to be an important characteristic of chemoprotective compounds. In this study, a series of 31 chalcones and their corresponding dihydroderivatives, substituted in 2,2'-, 3,3'-, 4- or 4'-position by hydroxyl or methoxy group, were tested for their ability to inhibit Fe(II)/NADPH-enhanced lipid peroxidation and cytochrome P4501A-dependent 7-cethoxyresorufin-O-deethylase (EROD) activity in rat hepatic microsomes. Effects of the compounds on GJIC were determined in rat liver epithelial WB-F344 cells. Most of the chalcones and dihydrochalcones inhibited EROD activity in a dose-dependent manner at the range 0.25-25 microM, which was comparable to model flavonoid inhibitors alpha-naphthoflavone and quercetin. The chalcones exhibited higher inhibition activity than the corresponding dihydroderivatives. Mono and dihydroxylated chalcones, and dihydrochalcones showed none or only a weak antioxidant activity; trihydroxyderivatives inhibited in vitro lipid peroxidation significantly only at 50 microM concentration. Potential adverse effects, namely inhibition of GJIC and/or cytotoxicity were detected after treatment of WB-F344 cells with a number of chalcone and dihydrochalcone derivatives, suggesting that they should be excluded from additional screening as chemoprotective compounds. Chalcones and dihydrochalcones substituted at 4- and/or 4'-position, which elicited no inhibition of GJIC, were further tested for the potential enhancing effects on GJIC. The present data seem to suggest that 4-hydroxy, 2',4'-dihydroxy-3-methoxy, 2,4,4'-trihydroxy, and 2',4,4'-trihydroxychalcone, 2',4-dihydroxy and 2'-hydroxy-3,4-dimethoxydihydrochalcone might be promising chemoprotective compounds against CYP1A activity, and partly also against oxidative damage without inducing adverse effects, such as GJIC inhibition. In general, determination of potencies of tested compounds to inhibit GJIC should be involved in any set of methods for the in vitro screening of chemoprotective characteristics of potential drugs, in order to reveal their potential adverse effects associated with tumor promotion.},
note = {Place: Ireland},
keywords = {Animals, Carcinogens/metabolism/*toxicity, Cell Communication/drug effects/physiology, Cell Line, Chalcones/*pharmacology/*toxicity, Cytochrome P-450 Enzyme Inhibitors, Cytochrome P-450 Enzyme System/*metabolism, Dose-Response Relationship, Drug, Epithelial Cells/drug effects/metabolism, Gap Junctions/drug effects/metabolism/physiology, In Vitro Techniques, Lipid Peroxidation/drug effects, Liver/drug effects/enzymology, Liver/drug effects/ultrastructure, Male, Microsomes, Rats, Structure-Activity Relationship, Wistar},
pubstate = {published},
tppubtype = {article}
}
2004
Machala, Miroslav; Bláha, Ludek; Lehmler, Hans-Joachim; Plísková, Martina; Májková, Zuzana; Kapplová, Petra; Sovadinová, Iva; Vondrácek, Jan; Malmberg, Tina; Robertson, Larry W.
In: Chemical research in toxicology, vol. 17, no. 3, pp. 340–347, 2004, ISSN: 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Adenocarcinoma/metabolism/pathology, Animals, Aryl Hydrocarbon/*biosynthesis, Breast Neoplasms/metabolism/pathology, Carcinoma, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Down-Regulation, Drug, Environmental Pollutants/*toxicity, Epithelial Cells/drug effects/metabolism, Estrogen/*biosynthesis, Gap Junctions/*drug effects/metabolism, Hepatocellular/metabolism/pathology, Humans, Hydroquinones, Hydroxylation, Liver Neoplasms/metabolism/pathology, Neoplasms/*metabolism/pathology, Polychlorinated Biphenyls/*toxicity, Quinones/*toxicity, Rats, Receptors, Tumor
@article{machala_toxicity_2004,
title = {Toxicity of hydroxylated and quinoid PCB metabolites: inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells.},
author = {Miroslav Machala and Ludek Bláha and Hans-Joachim Lehmler and Martina Plísková and Zuzana Májková and Petra Kapplová and Iva Sovadinová and Jan Vondrácek and Tina Malmberg and Larry W. Robertson},
doi = {10.1021/tx030034v},
issn = {0893-228X},
year = {2004},
date = {2004-03-01},
journal = {Chemical research in toxicology},
volume = {17},
number = {3},
pages = {340–347},
abstract = {In the present study, a series of 32 hydroxy- and dihydroxy-polychlorinated biphenyls (OH-PCBs) and PCB-derived quinones were prepared and evaluated for their in vitro potencies to downregulate gap junctional intercellular communication (GJIC) and to activate the aryl hydrocarbon receptor (AhR) and the estrogen receptor alpha (ER) in well-established liver and mammary cell models. The rat liver epithelial cell line WB-F344 was used for in vitro determination of GJIC inhibition; the AhR-inducing activity was determined in the rat hepatoma H4IIE.Luc cells stably transfected with a luciferase reporter gene; ER-mediated activity was measured in two breast carcinoma cell lines, MVLN and T47D.Luc, stably transfected with luciferase under the control of estrogen responsive element. Acute inhibition of GJIC, potentially associated with tumor promotion, was detected after treatment with all OH-PCBs under study, with the persistent OH-PCBs being the strongest ones. Several compounds were found to significantly induce the AhR-mediated activity, including 4'-OH-PCB 79, a metabolite of PCB 77, and 2-(4'-chloro)- and 2-(3',4'-dichloro)-1,4-benzoquinones and 1,4-hydroquinones. Low molecular weight OH-PCBs, such as 3'-hydroxy, 4'-, and 3',4'-dihydroxy-4-chlorobiphenyl, elicited significant estrogenic activity and potentiated effect of 17beta-estradiol. Antiestrogenic potencies, determined in the presence of 17beta-estradiol, were found for persistent 4-OH-PCB 187, 4-OH-PCB 146, and some low chlorinated PCB derivatives. However, no apparent association between induction of AhR activity and antiestrogenicity was observed. The majority of the OH-PCBs suppressed the 17beta-estradiol response only at cytotoxic concentrations. Spearman's rank correlations were calculated for these biological data and the physicochemical descriptors, hydrophobicity (log P), molar volume, pKa, log D, and dihedral angle. Significant correlations were found between potency to downregulate GJIC and log P and molar volume (R = -0.7, p < 0.0001). Antiestrogenic effects were also negatively correlated with hydrophobicity and molar volume. No significant correlations among other biological end points and the physicochemical descriptors were observed for the entire set of compounds. These results show that oxygenated PCB metabolites are capable of multiple adverse effects, including gap junction inhibition, AhR-mediated activity, and (anti)estrogenicity. The inhibition of GJIC by OH-PCBs represents a novel mode of action of both the lower chlorinated and the persisting high molecular weight OH-PCBs.},
note = {Place: United States},
keywords = {Adenocarcinoma/metabolism/pathology, Animals, Aryl Hydrocarbon/*biosynthesis, Breast Neoplasms/metabolism/pathology, Carcinoma, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Down-Regulation, Drug, Environmental Pollutants/*toxicity, Epithelial Cells/drug effects/metabolism, Estrogen/*biosynthesis, Gap Junctions/*drug effects/metabolism, Hepatocellular/metabolism/pathology, Humans, Hydroquinones, Hydroxylation, Liver Neoplasms/metabolism/pathology, Neoplasms/*metabolism/pathology, Polychlorinated Biphenyls/*toxicity, Quinones/*toxicity, Rats, Receptors, Tumor},
pubstate = {published},
tppubtype = {article}
}