2018
Hýžd'alová, Martina; Pivnicka, Jakub; Zapletal, Ondrej; Vázquez-Gómez, Gerardo; Matthews, Jason; Neca, Jirí; Pencíková, Katerina; Machala, Miroslav; Vondrácek, Jan
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 165, no. 2, pp. 447–461, 2018, ISSN: 1096-0929 1096-6080, (Place: United States).
Abstract | Links | BibTeX | Tags: Aryl Hydrocarbon/genetics/*metabolism, Cell Culture Techniques, Cell Cycle/drug effects/genetics, Cell Proliferation/*drug effects/genetics, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1/genetics/metabolism, Endocrine Disruptors/metabolism/*toxicity, Estrogen/genetics/metabolism, Gene Expression/drug effects, Gene Knockdown Techniques, Genes, Genetic Vectors, Humans, MCF-7 Cells, Plasmids, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter, Transfection
@article{hyzdalova_aryl_2018,
title = {Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation.},
author = {Martina Hýžd'alová and Jakub Pivnicka and Ondrej Zapletal and Gerardo Vázquez-Gómez and Jason Matthews and Jirí Neca and Katerina Pencíková and Miroslav Machala and Jan Vondrácek},
doi = {10.1093/toxsci/kfy153},
issn = {1096-0929 1096-6080},
year = {2018},
date = {2018-10-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {165},
number = {2},
pages = {447–461},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that interact in a complex manner with both the aryl hydrocarbon receptor (AhR) and estrogen receptors (ER). Their potential endocrine-disrupting activities may depend on both inhibitory AhR-ER cross-talk and on AhR-dependent metabolic production of estrogenic PAH metabolites. Here, we analyzed the impact of AhR on estrogen-like effects of PAHs, such as benzo[a]pyrene (BaP), in particular, on control of cell cycle progression/cell proliferation. Using AhR knockout variant of estrogen-sensitive human breast cancer MCF-7 cells (MCF-7 AhRKO cells), we observed that the AhR-dependent control of cytochrome P450 family 1 (CYP1) expression played a major role in formation of estrogenic BaP metabolites, most notably 3-OH-BaP, which contributed to the ER-dependent induction of cell cycle progression/cell proliferation. Both BaP metabolism and the BaP-induced S-phase transition/cell proliferation were inhibited in MCF-7 AhRKO cells, whereas these cells remained sensitive towards both endogenous estrogen 17β-estradiol or hydroxylated BaP metabolites. BaP was found to increase the activity of ER-dependent luciferase reporter gene in wild-type MCF-7 cells; however, unlike its hydroxylated metabolite, BaP failed to stimulate luciferase activity in MCF-7 AhRKO cells. Similarly, estrogen-like effects of other known estrogenic PAHs, such as benz[a]anthracene or 3-methylcholanthrene, were diminished in MCF-7 AhRKO cells. Ectopic expression of human CYP1A1 and CYP1B1 enzymes partly restored both BaP metabolism and its effects on cell proliferation. Taken together, our data suggest that the AhR-dependent metabolism of PAHs contributes significantly to the impact of PAHs on cell proliferation in estrogen-sensitive cells.},
note = {Place: United States},
keywords = {Aryl Hydrocarbon/genetics/*metabolism, Cell Culture Techniques, Cell Cycle/drug effects/genetics, Cell Proliferation/*drug effects/genetics, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1/genetics/metabolism, Endocrine Disruptors/metabolism/*toxicity, Estrogen/genetics/metabolism, Gene Expression/drug effects, Gene Knockdown Techniques, Genes, Genetic Vectors, Humans, MCF-7 Cells, Plasmids, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter, Transfection},
pubstate = {published},
tppubtype = {article}
}
Pěnčíková, Kateřina; Svržková, Lucie; Strapáčová, Simona; Neča, Jiří; Bartoňková, Iveta; Dvořák, Zdeněk; Hýžďalová, Martina; Pivnička, Jakub; Pálková, Lenka; Lehmler, Hans-Joachim; Li, Xueshu; Vondráček, Jan; Machala, Miroslav
In: Environmental pollution (Barking, Essex : 1987), vol. 237, pp. 473–486, 2018, ISSN: 1873-6424 0269-7491, (Place: England).
Abstract | Links | BibTeX | Tags: Air Pollutants/*toxicity, Airborne polychlorinated biphenyls, Cell Line, Constitutive Androstane Receptor, Cytoplasmic and Nuclear/metabolism, Endocrine disruption, Endocrine Disruptors/metabolism/*toxicity, Epithelial Cells/drug effects, Humans, HydroxyLated PCBs, Hydroxylation, Metabolism of xenobiotics, Neoplasms/metabolism, Polychlorinated Biphenyls/metabolism/*toxicity, Pregnane X receptor, Receptors, Signal Transduction/drug effects, Steroid/metabolism, Tumor promotion
@article{pencikova_vitro_2018,
title = {In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion.},
author = {Kateřina Pěnčíková and Lucie Svržková and Simona Strapáčová and Jiří Neča and Iveta Bartoňková and Zdeněk Dvořák and Martina Hýžďalová and Jakub Pivnička and Lenka Pálková and Hans-Joachim Lehmler and Xueshu Li and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.envpol.2018.02.067},
issn = {1873-6424 0269-7491},
year = {2018},
date = {2018-06-01},
journal = {Environmental pollution (Barking, Essex : 1987)},
volume = {237},
pages = {473–486},
abstract = {The mechanisms contributing to toxic effects of airborne lower-chlorinated PCB congeners (LC-PCBs) remain poorly characterized. We evaluated in vitro toxicities of environmental LC-PCBs found in both indoor and outdoor air (PCB 4, 8, 11, 18, 28 and 31), and selected hydroxylated metabolites of PCB 8, 11 and 18, using reporter gene assays, as well as other functional cellular bioassays. We focused on processes linked with endocrine disruption, tumor promotion and/or regulation of transcription factors controlling metabolism of both endogenous compounds and xenobiotics. The tested LC-PCBs were found to be mostly efficient anti-androgenic (within nanomolar - micromolar range) and estrogenic (at micromolar concentrations) compounds, as well as inhibitors of gap junctional intercellular communication (GJIC) at micromolar concentrations. PCB 8, 28 and 31 were found to partially inhibit the aryl hydrocarbon receptor (AhR)-mediated activity. The tested LC-PCBs were also partial constitutive androstane receptor (CAR) and pregnane X receptor (PXR) agonists, with PCB 4, 8 and 18 being the most active compounds. They were inactive towards other nuclear receptors, such as vitamin D receptor, thyroid receptor α, glucocorticoid receptor or peroxisome proliferator-activated receptor γ. We found that only PCB 8 contributed to generation of oxidative stress, while all tested LC-PCBs induced arachidonic acid release (albeit without further modulations of arachidonic acid metabolism) in human lung epithelial cells. Importantly, estrogenic effects of hydroxylated (OH-PCB) metabolites of LC-PCBs (4-OH-PCB 8, 4-OH-PCB 11 and 4'-OH-PCB 18) were higher than those of the parent PCBs, while their other toxic effects were only slightly altered or suppressed. This suggested that metabolism may alter toxicity profiles of LC-PCBs in a receptor-specific manner. In summary, anti-androgenic and estrogenic activities, acute inhibition of GJIC and suppression of the AhR-mediated activity were found to be the most relevant modes of action of airborne LC-PCBs, although they partially affected also additional cellular targets.},
note = {Place: England},
keywords = {Air Pollutants/*toxicity, Airborne polychlorinated biphenyls, Cell Line, Constitutive Androstane Receptor, Cytoplasmic and Nuclear/metabolism, Endocrine disruption, Endocrine Disruptors/metabolism/*toxicity, Epithelial Cells/drug effects, Humans, HydroxyLated PCBs, Hydroxylation, Metabolism of xenobiotics, Neoplasms/metabolism, Polychlorinated Biphenyls/metabolism/*toxicity, Pregnane X receptor, Receptors, Signal Transduction/drug effects, Steroid/metabolism, Tumor promotion},
pubstate = {published},
tppubtype = {article}
}