2018
Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Andrysík, Zdeněk; Hýžďalová, Martina; Hrubá, Eva; Pěnčíková, Kateřina; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Espinosa, Joaquín M.; Vondráček, Jan; Machala, Miroslav
Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Journal Article
In: Toxicology letters, vol. 292, pp. 162–174, 2018, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: A549 Cells, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/metabolism, Azo Compounds/toxicity, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, Benzo(a)pyrene/toxicity, Carbazoles/toxicity, Dioxins, Environmental Pollutants/*toxicity, Fluorenes/toxicity, Gene Expression Profiling/methods, Gene Expression Regulation, Gene Regulatory Networks/drug effects, Genetic/drug effects, Global gene expression profiling, Humans, Indoles/toxicity, Ligands, Lung cancer, Lung Neoplasms/*genetics/metabolism, Neoplastic/*drug effects, Oligonucleotide Array Sequence Analysis, Polychlorinated Dibenzodioxins/toxicity, Pyrazoles/toxicity, Receptors, Signal Transduction/drug effects, Thiazoles/toxicity, Time Factors, Transcription, Transcriptional Activation/drug effects, Transcriptome/*drug effects
@article{prochazkova_adaptive_2018,
title = {Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands.},
author = {Jiřina Procházková and Simona Strapáčová and Lucie Svržková and Zdeněk Andrysík and Martina Hýžďalová and Eva Hrubá and Kateřina Pěnčíková and Helena Líbalová and Jan Topinka and Jiří Kléma and Joaquín M. Espinosa and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.toxlet.2018.04.024},
issn = {1879-3169 0378-4274},
year = {2018},
date = {2018-08-01},
journal = {Toxicology letters},
volume = {292},
pages = {162–174},
abstract = {Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants.},
note = {Place: Netherlands},
keywords = {A549 Cells, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/metabolism, Azo Compounds/toxicity, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, Benzo(a)pyrene/toxicity, Carbazoles/toxicity, Dioxins, Environmental Pollutants/*toxicity, Fluorenes/toxicity, Gene Expression Profiling/methods, Gene Expression Regulation, Gene Regulatory Networks/drug effects, Genetic/drug effects, Global gene expression profiling, Humans, Indoles/toxicity, Ligands, Lung cancer, Lung Neoplasms/*genetics/metabolism, Neoplastic/*drug effects, Oligonucleotide Array Sequence Analysis, Polychlorinated Dibenzodioxins/toxicity, Pyrazoles/toxicity, Receptors, Signal Transduction/drug effects, Thiazoles/toxicity, Time Factors, Transcription, Transcriptional Activation/drug effects, Transcriptome/*drug effects},
pubstate = {published},
tppubtype = {article}
}
2013
Andrysík, Zdeněk; Procházková, Jiřina; Kabátková, Markéta; Umannová, Lenka; Simečková, Pavlína; Kohoutek, Jiří; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Archives of toxicology, vol. 87, no. 3, pp. 491–503, 2013, ISSN: 1432-0738 0340-5761, (Place: Germany).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*agonists/genetics/metabolism, Benz(a)Anthracenes/toxicity, Carcinogens/*toxicity, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Transformation, Connexin 43/genetics/*metabolism, Contact Inhibition/*drug effects, Dose-Response Relationship, Down-Regulation, Drug, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/toxicity, Gap Junctions/*drug effects/metabolism/pathology, Gene Knockdown Techniques, Indoles/pharmacology, Ligands, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Neoplastic/chemically induced/metabolism/pathology, Phloroglucinol/analogs & derivatives/pharmacology, Phosphorylation, Polychlorinated Dibenzodioxins/toxicity, Proteasome Endopeptidase Complex/metabolism, Rats, Receptors, RNA Interference, Signal Transduction/*drug effects, Time Factors, Transfection
@article{andrysik_aryl_2013,
title = {Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication.},
author = {Zdeněk Andrysík and Jiřina Procházková and Markéta Kabátková and Lenka Umannová and Pavlína Simečková and Jiří Kohoutek and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1007/s00204-012-0963-7},
issn = {1432-0738 0340-5761},
year = {2013},
date = {2013-03-01},
journal = {Archives of toxicology},
volume = {87},
number = {3},
pages = {491–503},
abstract = {The aryl hydrocarbon receptor (AhR) contributes to the control of cell-to-cell communication, cell adhesion, migration or proliferation. In the present study, we investigated the regulation of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) during the AhR-dependent disruption of contact inhibition in non-tumorigenic liver epithelial cells. The contact inhibition of cell proliferation is a process restricting the cell division of confluent non-transformed cells, which is frequently abolished in cancer cells; however, the mechanisms contributing to its disruption are still only partially understood. Disruption of contact inhibition, which was induced by toxic AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or polycyclic aromatic hydrocarbons in epithelial WB-F344 cells, reduced Cx43 protein levels, possibly via enhanced proteasomal degradation, significantly decreased the amount of gap junction plaques and downregulated GJIC, in an AhR-dependent manner. Although both intracellular and membrane Cx43 pools were markedly reduced in cells released from contact inhibition by TCDD, siRNA-mediated Cx43 knock-down was not sufficient to stimulate proliferation in contact-inhibited cells. Our data suggest that downregulation of Cx43/GJIC in non-transformed epithelial cells is an inherent part of disruption of contact inhibition, which occurs at the post-transcriptional level. This process runs in parallel with alterations of other forms of cell-to-cell communication, thus suggesting that toxic AhR agonists may simultaneously abrogate contact inhibition and reduce GJIC, two essential mechanisms linked to deregulation of cell-to-cell communication during tumor promotion and progression.},
note = {Place: Germany},
keywords = {Animals, Aryl Hydrocarbon/*agonists/genetics/metabolism, Benz(a)Anthracenes/toxicity, Carcinogens/*toxicity, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Transformation, Connexin 43/genetics/*metabolism, Contact Inhibition/*drug effects, Dose-Response Relationship, Down-Regulation, Drug, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/toxicity, Gap Junctions/*drug effects/metabolism/pathology, Gene Knockdown Techniques, Indoles/pharmacology, Ligands, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Neoplastic/chemically induced/metabolism/pathology, Phloroglucinol/analogs & derivatives/pharmacology, Phosphorylation, Polychlorinated Dibenzodioxins/toxicity, Proteasome Endopeptidase Complex/metabolism, Rats, Receptors, RNA Interference, Signal Transduction/*drug effects, Time Factors, Transfection},
pubstate = {published},
tppubtype = {article}
}
2007
Andrysík, Zdenek; Vondrácek, Jan; Machala, Miroslav; Krcmár, Pavel; Svihálková-Sindlerová, Lenka; Kranz, Anne; Weiss, Carsten; Faust, Dagmar; Kozubík, Alois; Dietrich, Cornelia
In: Mutation research, vol. 615, no. 1-2, pp. 87–97, 2007, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/antagonists & inhibitors/genetics/*metabolism, Base Sequence, Benz(a)Anthracenes/toxicity, Benzo(a)pyrene/toxicity, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/*physiology, Cell Line, Cell Proliferation/drug effects, Cyclin A/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cytochrome P-450 CYP1A1/genetics, Epithelial Cells/cytology/drug effects/metabolism, Fluorenes/toxicity, Gene Expression/drug effects, Hepatocytes/cytology/*drug effects/*metabolism, Messenger/genetics/metabolism, Multiprotein Complexes, Mutagens/toxicity, Mutation, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, RNA, Small Interfering/genetics
@article{andrysik_aryl_2007,
title = {The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells.},
author = {Zdenek Andrysík and Jan Vondrácek and Miroslav Machala and Pavel Krcmár and Lenka Svihálková-Sindlerová and Anne Kranz and Carsten Weiss and Dagmar Faust and Alois Kozubík and Cornelia Dietrich},
doi = {10.1016/j.mrfmmm.2006.10.004},
issn = {0027-5107},
year = {2007},
date = {2007-02-01},
journal = {Mutation research},
volume = {615},
number = {1-2},
pages = {87–97},
abstract = {Disruption of cell proliferation control by polycyclic aromatic hydrocarbons (PAHs) may contribute to their carcinogenicity. We investigated role of the aryl hydrocarbon receptor (AhR) in disruption of contact inhibition in rat liver epithelial WB-F344 'stem-like' cells, induced by the weakly mutagenic benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF) and by the strongly mutagenic benzo[a]pyrene (BaP). There were significant differences between the effects of BaA and BbF, and those of the strongly genotoxic BaP. Both BaA and BbF increased percentage of cells entering S-phase and cell numbers, associated with an increased expression of Cyclin A and Cyclin A/cdk2 complex activity. Their effects were significantly reduced in cells expressing a dominant-negative AhR mutant (dnAhR). Roscovitine, a chemical inhibitor of cdk2, abolished the induction of cell proliferation by BbF. However, neither BaA nor BbF modulated expression of the principal cdk inhibitor involved in maintenance of contact inhibition, p27(Kip1), or pRb phosphorylation. The strongly mutagenic BaP induced apoptosis, a decrease in total cell numbers and significantly higher percentage of cells entering S-phase than either BaA or BbF. Given that BaP induced high levels of Cyclin A/cdk2 activity, downregulation of p27(Kip1) and hyperphosphorylation of pRb, the accumulation of cells in S-phase was probably due to cell proliferation, although S-phase arrest due to blocked replication forks can not be excluded. Both types of effects of BaP were significantly attenuated in dnAhR cells. Transfection of WB-F344 cells with siRNA targeted against AhR decreased induction of Cyclin A induced by BbF or BaP, further supporting the role of AhR in proliferative effects of PAHs. This suggest that activation of AhR plays a significant role both in disruption of contact inhibition by weakly mutagenic PAHs and in genotoxic effects of BaP possibly leading to enhanced cell proliferation. Thus, PAHs may increase proliferative rate and the likelihood of fixation of mutations.},
note = {Place: Netherlands},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/antagonists & inhibitors/genetics/*metabolism, Base Sequence, Benz(a)Anthracenes/toxicity, Benzo(a)pyrene/toxicity, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/*physiology, Cell Line, Cell Proliferation/drug effects, Cyclin A/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cytochrome P-450 CYP1A1/genetics, Epithelial Cells/cytology/drug effects/metabolism, Fluorenes/toxicity, Gene Expression/drug effects, Hepatocytes/cytology/*drug effects/*metabolism, Messenger/genetics/metabolism, Multiprotein Complexes, Mutagens/toxicity, Mutation, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, RNA, Small Interfering/genetics},
pubstate = {published},
tppubtype = {article}
}