2018
Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Andrysík, Zdeněk; Hýžďalová, Martina; Hrubá, Eva; Pěnčíková, Kateřina; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Espinosa, Joaquín M.; Vondráček, Jan; Machala, Miroslav
Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Journal Article
In: Toxicology letters, vol. 292, pp. 162–174, 2018, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: A549 Cells, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/metabolism, Azo Compounds/toxicity, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, Benzo(a)pyrene/toxicity, Carbazoles/toxicity, Dioxins, Environmental Pollutants/*toxicity, Fluorenes/toxicity, Gene Expression Profiling/methods, Gene Expression Regulation, Gene Regulatory Networks/drug effects, Genetic/drug effects, Global gene expression profiling, Humans, Indoles/toxicity, Ligands, Lung cancer, Lung Neoplasms/*genetics/metabolism, Neoplastic/*drug effects, Oligonucleotide Array Sequence Analysis, Polychlorinated Dibenzodioxins/toxicity, Pyrazoles/toxicity, Receptors, Signal Transduction/drug effects, Thiazoles/toxicity, Time Factors, Transcription, Transcriptional Activation/drug effects, Transcriptome/*drug effects
@article{prochazkova_adaptive_2018,
title = {Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands.},
author = {Jiřina Procházková and Simona Strapáčová and Lucie Svržková and Zdeněk Andrysík and Martina Hýžďalová and Eva Hrubá and Kateřina Pěnčíková and Helena Líbalová and Jan Topinka and Jiří Kléma and Joaquín M. Espinosa and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.toxlet.2018.04.024},
issn = {1879-3169 0378-4274},
year = {2018},
date = {2018-08-01},
journal = {Toxicology letters},
volume = {292},
pages = {162–174},
abstract = {Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants.},
note = {Place: Netherlands},
keywords = {A549 Cells, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/metabolism, Azo Compounds/toxicity, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, Benzo(a)pyrene/toxicity, Carbazoles/toxicity, Dioxins, Environmental Pollutants/*toxicity, Fluorenes/toxicity, Gene Expression Profiling/methods, Gene Expression Regulation, Gene Regulatory Networks/drug effects, Genetic/drug effects, Global gene expression profiling, Humans, Indoles/toxicity, Ligands, Lung cancer, Lung Neoplasms/*genetics/metabolism, Neoplastic/*drug effects, Oligonucleotide Array Sequence Analysis, Polychlorinated Dibenzodioxins/toxicity, Pyrazoles/toxicity, Receptors, Signal Transduction/drug effects, Thiazoles/toxicity, Time Factors, Transcription, Transcriptional Activation/drug effects, Transcriptome/*drug effects},
pubstate = {published},
tppubtype = {article}
}
2017
Zapletal, Ondřej; Tylichová, Zuzana; Neča, Jiří; Kohoutek, Jiří; Machala, Miroslav; Milcová, Alena; Pokorná, Michaela; Topinka, Jan; Moyer, Mary Pat; Hofmanová, Jiřina; Kozubík, Alois; Vondráček, Jan
In: Archives of toxicology, vol. 91, no. 5, pp. 2135–2150, 2017, ISSN: 1432-0738 0340-5761, (Place: Germany).
Abstract | Links | BibTeX | Tags: Benzo(a)pyrene/metabolism/*pharmacokinetics, beta Catenin/metabolism, Butyrate, Butyric Acid/*pharmacology, Colon epithelial cells, Colon/*drug effects/metabolism, CYP1A1, Cytochrome P-450 CYP1A1/genetics/*metabolism, DNA adducts, DNA Adducts/drug effects/metabolism, Enhancer Elements, Genetic/drug effects, HCT116 Cells, Histone Deacetylase 1/antagonists & inhibitors/metabolism, Histone Deacetylase Inhibitors/pharmacology, Histone deacetylases, Histones/metabolism, HT29 Cells, Humans, Inactivation, Metabolic, Polycyclic aromatic hydrocarbons
@article{zapletal_butyrate_2017,
title = {Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzo[a]pyrene via its histone deacetylase activity in colon epithelial cell models.},
author = {Ondřej Zapletal and Zuzana Tylichová and Jiří Neča and Jiří Kohoutek and Miroslav Machala and Alena Milcová and Michaela Pokorná and Jan Topinka and Mary Pat Moyer and Jiřina Hofmanová and Alois Kozubík and Jan Vondráček},
doi = {10.1007/s00204-016-1887-4},
issn = {1432-0738 0340-5761},
year = {2017},
date = {2017-05-01},
journal = {Archives of toxicology},
volume = {91},
number = {5},
pages = {2135–2150},
abstract = {Butyrate, a short-chain fatty acid produced by fermentation of dietary fiber, is an important regulator of colonic epithelium homeostasis. In this study, we investigated the impact of this histone deacetylase (HDAC) inhibitor on expression/activity of cytochrome P450 family 1 (CYP1) and on metabolism of carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP), in colon epithelial cells. Sodium butyrate (NaBt) strongly potentiated the BaP-induced expression of CYP1A1 in human colon carcinoma HCT116 cells. It also co-stimulated the 7-ethoxyresorufin-O-deethylase (EROD) activity induced by the 2,3,7,8-tetrachlorodibenzo-p-dioxin, a prototypical ligand of the aryl hydrocarbon receptor. Up-regulation of CYP1A1 expression/activity corresponded with an enhanced metabolism of BaP and formation of covalent DNA adducts. NaBt significantly potentiated CYP1A1 induction and/or metabolic activation of BaP also in other human colon cell models, colon adenoma AA/C1 cells, colon carcinoma HT-29 cells, or in NCM460D cell line derived from normal colon mucosa. Our results suggest that the effects of NaBt were due to its impact on histone acetylation, because additional HDAC inhibitors (trichostatin A and suberanilohydroxamic acid) likewise increased both the induction of EROD activity and formation of covalent DNA adducts. NaBt-induced acetylation of histone H3 (at Lys14) and histone H4 (at Lys16), two histone modifications modulated during activation of CYP1A1 transcription, and it reduced binding of HDAC1 to the enhancer region of CYP1A1 gene. This in vitro study suggests that butyrate, through modulation of histone acetylation, may potentiate induction of CYP1A1 expression, which might in turn alter the metabolism of BaP within colon epithelial cells.},
note = {Place: Germany},
keywords = {Benzo(a)pyrene/metabolism/*pharmacokinetics, beta Catenin/metabolism, Butyrate, Butyric Acid/*pharmacology, Colon epithelial cells, Colon/*drug effects/metabolism, CYP1A1, Cytochrome P-450 CYP1A1/genetics/*metabolism, DNA adducts, DNA Adducts/drug effects/metabolism, Enhancer Elements, Genetic/drug effects, HCT116 Cells, Histone Deacetylase 1/antagonists & inhibitors/metabolism, Histone Deacetylase Inhibitors/pharmacology, Histone deacetylases, Histones/metabolism, HT29 Cells, Humans, Inactivation, Metabolic, Polycyclic aromatic hydrocarbons},
pubstate = {published},
tppubtype = {article}
}
2015
Svobodová, Jana; Kabátková, Markéta; Šmerdová, Lenka; Brenerová, Petra; Dvořák, Zdeněk; Machala, Miroslav; Vondráček, Jan
In: Toxicology, vol. 333, pp. 37–44, 2015, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: AhR, Animals, Apoptosis, Apoptosis/*drug effects, Aryl Hydrocarbon/*agonists/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, BIRC5/survivin, Camptothecin/*toxicity, Caspase 3/metabolism, Cell Line, Contact inhibition, Contact Inhibition/*drug effects, Epithelial Cells/*drug effects/metabolism/pathology, Genetic/drug effects, Hippo signaling, Humans, Inbred F344, Inhibitor of Apoptosis Proteins/genetics/metabolism, Liver/*drug effects/metabolism/pathology, Microtubule-Associated Proteins/genetics/*metabolism, Poly (ADP-Ribose) Polymerase-1, Poly(ADP-ribose) Polymerases/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Rats, Receptors, RNA Interference, Signal Transduction/drug effects, Survivin, TCDD, Time Factors, Topoisomerase I Inhibitors/*toxicity, Transcription, Transfection, Up-Regulation
@article{svobodova_aryl_2015,
title = {The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis.},
author = {Jana Svobodová and Markéta Kabátková and Lenka Šmerdová and Petra Brenerová and Zdeněk Dvořák and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.tox.2015.04.001},
issn = {1879-3185 0300-483X},
year = {2015},
date = {2015-07-01},
journal = {Toxicology},
volume = {333},
pages = {37–44},
abstract = {Inhibition of apoptosis by the ligands of the aryl hydrocarbon receptor (AhR) has been proposed to play a role in their tumor promoting effects on liver parenchymal cells. However, little is presently known about the impact of toxic AhR ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on apoptosis in other liver cell types, such as in liver epithelial/progenitor cells. In the present study, we focused on the effects of TCDD on apoptosis regulation in a model of liver progenitor cells, rat WB-F344 cell line, during the TCDD-elicited release from contact inhibition. The stimulation of cell proliferation in this cell line was associated with deregulated expression of a number of genes known to be under transcriptional control of the Hippo signaling pathway, a principal regulatory pathway involved in contact inhibition of cell proliferation. Interestingly, we found that mRNA and protein levels of survivin, a known Hippo target, which plays a role both in cell division and inhibition of apoptosis, were significantly up-regulated in rat liver epithelial cell model, as well as in undifferentiated human liver HepaRG cells. Using the short interfering RNA-mediated knockdown, we confirmed that survivin plays a central role in cell division of WB-F344 cells. When evaluating the effects of TCDD on apoptosis induction by camptothecin, a genotoxic topoisomerase I inhibitor, we observed that the pre-treatment of WB-F344 cells with TCDD increased number of cells with apoptotic nuclear morphology, and it potentiated cleavage of both caspase-3 and poly(ADP-ribose) polymerase I. This indicated that despite the observed up-regulation of survivin, apoptosis induced by the genotoxin was potentiated in the model of rat liver progenitor cells. The present results indicate that, unlike in hepatocytes, AhR agonists may not prevent induction of apoptosis elicited by DNA-damaging agents in a model of rat liver progenitor cells.},
note = {Place: Ireland},
keywords = {AhR, Animals, Apoptosis, Apoptosis/*drug effects, Aryl Hydrocarbon/*agonists/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, BIRC5/survivin, Camptothecin/*toxicity, Caspase 3/metabolism, Cell Line, Contact inhibition, Contact Inhibition/*drug effects, Epithelial Cells/*drug effects/metabolism/pathology, Genetic/drug effects, Hippo signaling, Humans, Inbred F344, Inhibitor of Apoptosis Proteins/genetics/metabolism, Liver/*drug effects/metabolism/pathology, Microtubule-Associated Proteins/genetics/*metabolism, Poly (ADP-Ribose) Polymerase-1, Poly(ADP-ribose) Polymerases/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Rats, Receptors, RNA Interference, Signal Transduction/drug effects, Survivin, TCDD, Time Factors, Topoisomerase I Inhibitors/*toxicity, Transcription, Transfection, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
2009
Maioli, Emanuela; Greci, Lucedio; Soucek, Karel; Hyzdalova, Martina; Pecorelli, Alessandra; Fortino, Vittoria; Valacchi, Giuseppe
Rottlerin inhibits ROS formation and prevents NFkappaB activation in MCF-7 and HT-29 cells. Journal Article
In: Journal of biomedicine & biotechnology, vol. 2009, pp. 742936, 2009, ISSN: 1110-7251 1110-7243, (Place: United States).
Abstract | Links | BibTeX | Tags: Acetophenones/chemistry/*pharmacology, Benzopyrans/chemistry/*pharmacology, Biphenyl Compounds/metabolism, Cell Nucleus/drug effects/metabolism, DNA/metabolism, Electron Spin Resonance Spectroscopy, Free Radical Scavengers/pharmacology, Genetic/drug effects, HT29 Cells, Humans, Hydrogen Peroxide/metabolism, Intracellular Space/drug effects/metabolism, NF-kappa B/*metabolism, Picrates/metabolism, Protein Binding/drug effects, Protein Transport/drug effects, Reactive Oxygen Species/*metabolism, Spectrophotometry, Transcription, Transfection, Tumor Necrosis Factor-alpha/pharmacology, Ultraviolet
@article{maioli_rottlerin_2009,
title = {Rottlerin inhibits ROS formation and prevents NFkappaB activation in MCF-7 and HT-29 cells.},
author = {Emanuela Maioli and Lucedio Greci and Karel Soucek and Martina Hyzdalova and Alessandra Pecorelli and Vittoria Fortino and Giuseppe Valacchi},
doi = {10.1155/2009/742936},
issn = {1110-7251 1110-7243},
year = {2009},
date = {2009-01-01},
journal = {Journal of biomedicine & biotechnology},
volume = {2009},
pages = {742936},
abstract = {Rottlerin, a polyphenol isolated from Mallotus Philippinensis, has been recently used as a selective inhibitor of PKC delta, although it can inhibit many kinases and has several biological effects. Among them, we recently found that Rottlerin inhibits the Nuclear Factor kappaB (NFkappaB), activated by either phorbol esters or H(2)O(2). Because of the redox sensitivity of NFkappaB and on the basis of Rottlerin antioxidant property, we hypothesized that Rottlerin could prevent NFkappaB activation acting as a free radicals scavenger, as other natural polyphenols. The current study confirms the antioxidant property of Rottlerin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in vitro and against oxidative stress induced by H(2)O(2) and by menadione in culture cells. We also demonstrate that Rottlerin prevents TNFalpha-dependent NFkappaB activation in MCF-7 cells and in HT-29 cells transfected with the NFkappaB-driven plasmid pBIIX-LUC, suggesting that Rottlerin can inhibit NFkappaB via several pathways and in several cell types.},
note = {Place: United States},
keywords = {Acetophenones/chemistry/*pharmacology, Benzopyrans/chemistry/*pharmacology, Biphenyl Compounds/metabolism, Cell Nucleus/drug effects/metabolism, DNA/metabolism, Electron Spin Resonance Spectroscopy, Free Radical Scavengers/pharmacology, Genetic/drug effects, HT29 Cells, Humans, Hydrogen Peroxide/metabolism, Intracellular Space/drug effects/metabolism, NF-kappa B/*metabolism, Picrates/metabolism, Protein Binding/drug effects, Protein Transport/drug effects, Reactive Oxygen Species/*metabolism, Spectrophotometry, Transcription, Transfection, Tumor Necrosis Factor-alpha/pharmacology, Ultraviolet},
pubstate = {published},
tppubtype = {article}
}
2002
Vondrácek, Jan; Kozubík, Alois; Machala, Miroslav
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 70, no. 2, pp. 193–201, 2002, ISSN: 1096-6080 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Breast Neoplasms/*metabolism, Cell Cycle/*drug effects/genetics, Cell Cycle/drug effects/genetics, Cultured, Estrogen Receptor alpha, Estrogen Receptor Modulators/pharmacology, Estrogen/genetics/*metabolism, G1 Phase/drug effects/genetics, Genes, Genetic/drug effects, Humans, Phosphorylation/drug effects, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter/*genetics, Resting Phase, S Phase/drug effects/genetics, Transcription, Tumor Cells
@article{vondracek_modulation_2002,
title = {Modulation of estrogen receptor-dependent reporter construct activation and G0/G1-S-phase transition by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells.},
author = {Jan Vondrácek and Alois Kozubík and Miroslav Machala},
doi = {10.1093/toxsci/70.2.193},
issn = {1096-6080 1096-0929},
year = {2002},
date = {2002-12-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {70},
number = {2},
pages = {193–201},
abstract = {It has been suggested that the estrogenicity of PAHs could contribute to their carcinogenic effects via increased tissue-specific cell proliferation. Both benzo[a]pyrene (BaP) and benz[a]anthracene (BaA) are known to weakly activate estrogen receptor (ER)-dependent reporter constructs. In this study, several other PAHs, including fluorene, fluoranthene, pyrene, chrysene, phenanthrene and anthracene, were found to act as very weak inducers of ER-mediated activity in the MCF-7 cell line stably transfected with a luciferase reporter gene. The effects of PAHs were time-dependent and they were not completely inhibited by antiestrogen ICI 182,780. In addition, BaP and BaA, as well as weakly estrogenic fluoranthene, significantly potentiated the maximum ER-mediated activity of 17beta-estradiol. Therefore, the effects of inhibitors of several types of protein kinases known to activate ERalpha in a ligand-independent manner were investigated. However, neither inhibitors nor inducers of extracellular signal-regulated kinases 1 and 2 (ERK1/2), phosphatidylinositol-3 kinase, protein kinase C, c-Src, or protein kinase A modified ER-mediated activity in this model. Neither estradiol nor BaA activated ERK1/2, two kinases suggested to play significant roles in ER signaling, suggesting that another kinase is involved in the observed phosphorylation of ERalpha. Similar to 17beta-estradiol, BaA stimulated G(0)/G(1)-S-phase transition in MCF-7 cells, which was fully suppressed by ICI 182,780. In conclusion, some PAHs can potentiate 17beta-estradiol-induced ER activation and stimulate cell cycle entry in vitro. However, their exact mode(s) of action and whether this phenomenon is of in vivo relevance remains to be elucidated.},
note = {Place: United States},
keywords = {Breast Neoplasms/*metabolism, Cell Cycle/*drug effects/genetics, Cell Cycle/drug effects/genetics, Cultured, Estrogen Receptor alpha, Estrogen Receptor Modulators/pharmacology, Estrogen/genetics/*metabolism, G1 Phase/drug effects/genetics, Genes, Genetic/drug effects, Humans, Phosphorylation/drug effects, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter/*genetics, Resting Phase, S Phase/drug effects/genetics, Transcription, Tumor Cells},
pubstate = {published},
tppubtype = {article}
}