2018
Tylichová, Zuzana; Slavík, Josef; Ciganek, Miroslav; Ovesná, Petra; Krčmář, Pavel; Straková, Nicol; Machala, Miroslav; Kozubík, Alois; Hofmanová, Jiřina; Vondráček, Jan
Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. Journal Article
In: Journal of cellular biochemistry, vol. 119, no. 6, pp. 4664–4679, 2018, ISSN: 1097-4644 0730-2312, (Place: United States).
Abstract | Links | BibTeX | Tags: Apoptosis/*drug effects, Butyrate, Butyrates/*pharmacology, Cell Differentiation/*drug effects, Ceramides, Colon cancer, Colonic Neoplasms/*metabolism/pathology, Docosahexaenoic acid, Docosahexaenoic Acids/*pharmacology, HCT116 Cells, Humans, lipid analyses, Lipid Metabolism/*drug effects, Membrane Lipids/classification/*metabolism, Phospholipids
@article{tylichova_butyrate_2018,
title = {Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells.},
author = {Zuzana Tylichová and Josef Slavík and Miroslav Ciganek and Petra Ovesná and Pavel Krčmář and Nicol Straková and Miroslav Machala and Alois Kozubík and Jiřina Hofmanová and Jan Vondráček},
doi = {10.1002/jcb.26641},
issn = {1097-4644 0730-2312},
year = {2018},
date = {2018-06-01},
journal = {Journal of cellular biochemistry},
volume = {119},
number = {6},
pages = {4664–4679},
abstract = {Docosahexaenoic acid (DHA) and sodium butyrate (NaBt) exhibit a number of interactive effects on colon cancer cell growth, differentiation, or apoptosis; however, the molecular mechanisms responsible for these interactions and their impact on cellular lipidome are still not fully clear. Here, we show that both dietary agents together induce dynamic alterations of lipid metabolism, specific cellular lipid classes, and fatty acid composition. In HT-29 cell line, a model of differentiating colon carcinoma cells, NaBt supported incorporation of free DHA into non-polar lipids and their accumulation in cytoplasmic lipid droplets. DHA itself was not incorporated into sphingolipids; however, it significantly altered representation of individual ceramide (Cer) classes, in particular in combination with NaBt (DHA/NaBt). We observed altered expression of enzymes involved in Cer metabolism in cells treated with NaBt or DHA/NaBt, and exogenous Cer 16:0 was found to promote induction of apoptosis in differentiating HT-29 cells. NaBt, together with DHA, increased n-3 fatty acid synthesis and attenuated metabolism of monounsaturated fatty acids. Finally, DHA and/or NaBt altered expression of proteins involved in synthesis of fatty acids, including elongase 5, stearoyl CoA desaturase 1, or fatty acid synthase, with NaBt increasing expression of caveolin-1 and CD36 transporter, which may further promote DHA incorporation and its impact on cellular lipidome. In conclusion, our results indicate that interactions of DHA and NaBt exert complex changes in cellular lipidome, which may contribute to the alterations of colon cancer cell differentiation/apoptotic responses. The present data extend our knowledge about the nature of interactive effects of dietary fatty acids.},
note = {Place: United States},
keywords = {Apoptosis/*drug effects, Butyrate, Butyrates/*pharmacology, Cell Differentiation/*drug effects, Ceramides, Colon cancer, Colonic Neoplasms/*metabolism/pathology, Docosahexaenoic acid, Docosahexaenoic Acids/*pharmacology, HCT116 Cells, Humans, lipid analyses, Lipid Metabolism/*drug effects, Membrane Lipids/classification/*metabolism, Phospholipids},
pubstate = {published},
tppubtype = {article}
}
2017
Hofmanová, Jiřina; Slavík, Josef; Ovesná, Petra; Tylichová, Zuzana; Vondráček, Jan; Straková, Nicol; Vaculová, Alena Hyršlová; Ciganek, Miroslav; Kozubík, Alois; Knopfová, Lucie; Šmarda, Jan; Machala, Miroslav
Dietary fatty acids specifically modulate phospholipid pattern in colon cells with distinct differentiation capacities. Journal Article
In: European journal of nutrition, vol. 56, no. 4, pp. 1493–1508, 2017, ISSN: 1436-6215 1436-6207, (Place: Germany).
Abstract | Links | BibTeX | Tags: Apoptosis, Apoptosis/drug effects, Butyrate, Butyric Acid/pharmacology, Cardiolipins, Caspase 3/genetics/metabolism, Cell Differentiation/*drug effects, Cell Line, Cell Proliferation/drug effects, Colon cancer, Colon/cytology/*drug effects, Docosahexaenoic acid, Docosahexaenoic Acids/*pharmacology, HCT116 Cells, Humans, Phospholipids, Phospholipids/*chemistry, Tandem Mass Spectrometry, Tumor
@article{hofmanova_dietary_2017,
title = {Dietary fatty acids specifically modulate phospholipid pattern in colon cells with distinct differentiation capacities.},
author = {Jiřina Hofmanová and Josef Slavík and Petra Ovesná and Zuzana Tylichová and Jan Vondráček and Nicol Straková and Alena Hyršlová Vaculová and Miroslav Ciganek and Alois Kozubík and Lucie Knopfová and Jan Šmarda and Miroslav Machala},
doi = {10.1007/s00394-016-1196-y},
issn = {1436-6215 1436-6207},
year = {2017},
date = {2017-06-01},
journal = {European journal of nutrition},
volume = {56},
number = {4},
pages = {1493–1508},
abstract = {PURPOSE: Although beneficial effects of the dietary n-3 docosahexaenoic acid (DHA) or butyrate in colon carcinogenesis have been implicated, the mechanisms of their action are not fully clear. Here, we investigated modulations of composition of individual phospholipid (PL) classes, with a particular emphasis on cardiolipins (CLs), in colon cells treated with DHA, sodium butyrate (NaBt), or their combination (DHA/NaBt), and we evaluated possible associations between lipid changes and cell fate after fatty acid treatment. METHODS: In two distinct human colon cell models, foetal colon (FHC) and adenocarcinoma (HCT-116) cells, we compared patterns and composition of individual PL classes following the fatty acid treatment by HPLC-MS/MS. In parallel, we measured the parameters reflecting cell proliferation, differentiation and death. RESULTS: In FHC cells, NaBt induced primarily differentiation, while co-treatment with DHA shifted their response towards cell death. In contrast, NaBt induced apoptosis in HCT-116 cells, which was not further affected by DHA. DHA was incorporated in all main PL types, increasing their unsaturation, while NaBt did not additionally modulate these effects in either cell model. Nevertheless, we identified an unusually wide range of CL species to be highly increased by NaBt and particularly by DHA/NaBt, and these effects were more pronounced in HCT-116 cells. DHA and DHA/NaBt enhanced levels of high molecular weight and more unsaturated CL species, containing DHA, which was specific for either differentiation or apoptotic responses. CONCLUSIONS: We identified a wide range of CL species in the colon cells which composition was significantly modified after DHA and NaBt treatment. These specific CL modulations might contribute to distinct cellular differentiation or apoptotic responses.},
note = {Place: Germany},
keywords = {Apoptosis, Apoptosis/drug effects, Butyrate, Butyric Acid/pharmacology, Cardiolipins, Caspase 3/genetics/metabolism, Cell Differentiation/*drug effects, Cell Line, Cell Proliferation/drug effects, Colon cancer, Colon/cytology/*drug effects, Docosahexaenoic acid, Docosahexaenoic Acids/*pharmacology, HCT116 Cells, Humans, Phospholipids, Phospholipids/*chemistry, Tandem Mass Spectrometry, Tumor},
pubstate = {published},
tppubtype = {article}
}
2009
Vanhara, Petr; Lincová, Eva; Kozubík, Alois; Jurdic, Pierre; Soucek, Karel; Smarda, Jan
Growth/differentiation factor-15 inhibits differentiation into osteoclasts–a novel factor involved in control of osteoclast differentiation. Journal Article
In: Differentiation; research in biological diversity, vol. 78, no. 4, pp. 213–222, 2009, ISSN: 1432-0436 0301-4681, (Place: England).
Abstract | Links | BibTeX | Tags: Acid Phosphatase/metabolism, Animals, Calcitriol/pharmacology, Carbonic Anhydrase II/antagonists & inhibitors, Cathepsin K/antagonists & inhibitors/genetics, Cell Differentiation/*drug effects, Cell Line, Conditioned/pharmacology, Culture Media, Dose-Response Relationship, Drug, Femur/cytology, Growth Differentiation Factor 15/*pharmacology, Humans, Inbred Strains, Isoenzymes/metabolism, Macrophage Colony-Stimulating Factor/pharmacology, Macrophages/cytology, Male, Mice, NF-kappa B/antagonists & inhibitors, Osteoclasts/*drug effects/metabolism, Prostatic Neoplasms/metabolism, Proto-Oncogene Proteins c-fos/antagonists & inhibitors, RANK Ligand/pharmacology, Tartrate-Resistant Acid Phosphatase, Time Factors, Tumor
@article{vanhara_growthdifferentiation_2009,
title = {Growth/differentiation factor-15 inhibits differentiation into osteoclasts–a novel factor involved in control of osteoclast differentiation.},
author = {Petr Vanhara and Eva Lincová and Alois Kozubík and Pierre Jurdic and Karel Soucek and Jan Smarda},
doi = {10.1016/j.diff.2009.07.008},
issn = {1432-0436 0301-4681},
year = {2009},
date = {2009-11-01},
journal = {Differentiation; research in biological diversity},
volume = {78},
number = {4},
pages = {213–222},
abstract = {Survival and capability of cancer cells to form metastases fundamentally depend on interactions with their microenvironment. Secondary tumors originating from prostate carcinomas affect remodeling of bone tissue and can induce both osteolytic and osteocondensing lesions. However, particular molecular mechanisms responsible for selective homing and activity of cancer cells in bone microenvironment have not been clarified yet. Growth/differentiation factor-15 (GDF-15), a distant member of the TGF-beta protein family, has recently been associated with many human cancers, including prostate. We show that both pure GDF-15 and the GDF-15-containing growth medium of 1,25(OH)(2)-vitamin D(3)-treated prostate adenocarcinoma LNCaP cells suppress formation of mature osteoclasts differentiated from RAW264.7 macrophages and bone-marrow precursors by M-CSF/RANKL in a dose-dependent manner. GDF-15 inhibits expression of c-Fos and activity of NFkappaB by delayed degradation of IkappaB. Moreover, GDF-15 inhibits expression of carbonic anhydrase II and cathepsin K, key osteoclast enzymes, and induces changes in SMAD and p38 signaling. The lack of functional osteoclasts can contribute to accumulation of bone matrix by reduction of bone resorption. These results unveil new role of GDF-15 in modulation of osteoclast differentiation and possibly in therapy of bone metastases.},
note = {Place: England},
keywords = {Acid Phosphatase/metabolism, Animals, Calcitriol/pharmacology, Carbonic Anhydrase II/antagonists & inhibitors, Cathepsin K/antagonists & inhibitors/genetics, Cell Differentiation/*drug effects, Cell Line, Conditioned/pharmacology, Culture Media, Dose-Response Relationship, Drug, Femur/cytology, Growth Differentiation Factor 15/*pharmacology, Humans, Inbred Strains, Isoenzymes/metabolism, Macrophage Colony-Stimulating Factor/pharmacology, Macrophages/cytology, Male, Mice, NF-kappa B/antagonists & inhibitors, Osteoclasts/*drug effects/metabolism, Prostatic Neoplasms/metabolism, Proto-Oncogene Proteins c-fos/antagonists & inhibitors, RANK Ligand/pharmacology, Tartrate-Resistant Acid Phosphatase, Time Factors, Tumor},
pubstate = {published},
tppubtype = {article}
}
Stixová, Lenka; Procházková, Jirina; Soucek, Karel; Hofmanová, Jirina; Kozubík, Alois
5-Lipoxygenase inhibitors potentiate 1alpha,25-dihydroxyvitamin D3-induced monocytic differentiation by activating p38 MAPK pathway. Journal Article
In: Molecular and cellular biochemistry, vol. 330, no. 1-2, pp. 229–238, 2009, ISSN: 1573-4919 0300-8177, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Arachidonate 5-Lipoxygenase/*genetics, Benzoquinones/pharmacology, Cell Differentiation/*drug effects, HL-60 Cells, Humans, Indoles/pharmacology, Lipoxygenase Inhibitors/*pharmacology, Monocytes/*cytology, p38 Mitogen-Activated Protein Kinases/*metabolism, Vitamin D/*analogs & derivatives/pharmacology
@article{stixova_5-lipoxygenase_2009,
title = {5-Lipoxygenase inhibitors potentiate 1alpha,25-dihydroxyvitamin D3-induced monocytic differentiation by activating p38 MAPK pathway.},
author = {Lenka Stixová and Jirina Procházková and Karel Soucek and Jirina Hofmanová and Alois Kozubík},
doi = {10.1007/s11010-009-0138-x},
issn = {1573-4919 0300-8177},
year = {2009},
date = {2009-10-01},
journal = {Molecular and cellular biochemistry},
volume = {330},
number = {1-2},
pages = {229–238},
abstract = {The treatment of human promyelocytic leukemia cell lines HL-60, and to some extent NB-4, with 1alpha,25-dihydroxyvitamin D(3) (VD3) induces differentiation toward the monocytic/macrophage lineage, demonstrated by the increased expression of CD11b and CD14, and the production of opsonized zymosan particles (OZP)-stimulated reactive oxygen species (ROS). Moreover, in more sensitive HL-60 cells, increased expression of 5-lipoxygenase (5-LPO), Mcl-1, IkappaB, and c-Jun, accompanied by the activation of p38 MAPK, was detected. These VD3 effects on HL-60 cell differentiation were significantly potentiated by 5-LPO inhibitors MK-886 and AA-861 and were inverted by SB202190 (SB), a p38 MAPK inhibitor. The inhibition of differentiation by SB was demonstrated by a reduction of CD14 expression and by a decrease in OZP-activated ROS production. These results indicated that p38 MAPK pathway is involved in 5-LPO inhibitors-dependent potentiation of VD3-induced monocytic differentiation.},
note = {Place: Netherlands},
keywords = {Arachidonate 5-Lipoxygenase/*genetics, Benzoquinones/pharmacology, Cell Differentiation/*drug effects, HL-60 Cells, Humans, Indoles/pharmacology, Lipoxygenase Inhibitors/*pharmacology, Monocytes/*cytology, p38 Mitogen-Activated Protein Kinases/*metabolism, Vitamin D/*analogs & derivatives/pharmacology},
pubstate = {published},
tppubtype = {article}
}
2004
Kovaríková, Martina; Hofmanová, Jirina; Soucek, Karel; Kozubík, Alois
The effects of TNF-alpha and inhibitors of arachidonic acid metabolism on human colon HT-29 cells depend on differentiation status. Journal Article
In: Differentiation; research in biological diversity, vol. 72, no. 1, pp. 23–31, 2004, ISSN: 0301-4681, (Place: England).
Abstract | Links | BibTeX | Tags: *Flavanones, Adenocarcinoma/drug therapy/pathology, Arachidonate 5-Lipoxygenase/metabolism, Arachidonic Acid/*metabolism, Butyrates/pharmacology, Caspase 3, Caspases/drug effects/metabolism, Cell Cycle/drug effects, Cell Differentiation/*drug effects, Cell Division/drug effects, Colonic Neoplasms/drug therapy/metabolism/pathology, Cyclooxygenase 2, Cyclooxygenase 2 Inhibitors, Cyclooxygenase Inhibitors/*pharmacology, Drug Synergism, Flavonoids/pharmacology, HT29 Cells/drug effects, Humans, Indomethacin/pharmacology, Isoenzymes/antagonists & inhibitors/metabolism, Lipoxygenase Inhibitors/*pharmacology, Masoprocol/pharmacology, Membrane Proteins, Niflumic Acid/pharmacology, Prostaglandin-Endoperoxide Synthases/metabolism, Tumor Necrosis Factor-alpha/*pharmacology
@article{kovarikova_effects_2004,
title = {The effects of TNF-alpha and inhibitors of arachidonic acid metabolism on human colon HT-29 cells depend on differentiation status.},
author = {Martina Kovaríková and Jirina Hofmanová and Karel Soucek and Alois Kozubík},
doi = {10.1111/j.1432-0436.2004.07201006.x},
issn = {0301-4681},
year = {2004},
date = {2004-02-01},
journal = {Differentiation; research in biological diversity},
volume = {72},
number = {1},
pages = {23–31},
abstract = {The level of differentiation could influence sensitivity of colonic epithelial cells to various stimuli. In our study, the effects of TNF-alpha, inhibitors of arachidonic acid (AA) metabolism (baicalein, BA; indomethacin, INDO; niflumic acid, NA; nordihydroguaiaretic acid, NDGA), and/or their combinations on undifferentiated or sodium butyrate (NaBt)-differentiated human colon adenocarcinoma HT-29 cells were compared. NaBt-treated cells became growth arrested (blocked in G0/G1 phase of the cell cycle), and showed down-regulated Bcl-xL and up-regulated Bak proteins and increased expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX). These cells were more perceptive to anti-proliferative and apoptotic effects of TNF-alpha. Both inhibitors of LOX (BA and NDGA) and COX (INDO and NA) in higher concentrations modulated cell cycle changes accompanying NaBt-induced differentiation and induced various level of cell death in undifferentiated and differentiated cells. Most important is our finding that TNF-alpha action on proliferation and cell death can be potentiated by co-treatment of cells with AA metabolism inhibitors, and that these effects were more significant in undifferentiated cells. TNF-alpha and INDO co-treatment was associated with accumulation of cells in G0/G1 cell cycle phase, increased reactive oxygen species production, and elevated caspase-3 activity. These results indicate the role of differentiation status in the sensitivity of HT-29 cells to the anti-proliferative and proapoptotic effects of TNF-alpha, AA metabolism inhibitors, and their combinations, and imply promising possibility for novel anti-cancer strategies.},
note = {Place: England},
keywords = {*Flavanones, Adenocarcinoma/drug therapy/pathology, Arachidonate 5-Lipoxygenase/metabolism, Arachidonic Acid/*metabolism, Butyrates/pharmacology, Caspase 3, Caspases/drug effects/metabolism, Cell Cycle/drug effects, Cell Differentiation/*drug effects, Cell Division/drug effects, Colonic Neoplasms/drug therapy/metabolism/pathology, Cyclooxygenase 2, Cyclooxygenase 2 Inhibitors, Cyclooxygenase Inhibitors/*pharmacology, Drug Synergism, Flavonoids/pharmacology, HT29 Cells/drug effects, Humans, Indomethacin/pharmacology, Isoenzymes/antagonists & inhibitors/metabolism, Lipoxygenase Inhibitors/*pharmacology, Masoprocol/pharmacology, Membrane Proteins, Niflumic Acid/pharmacology, Prostaglandin-Endoperoxide Synthases/metabolism, Tumor Necrosis Factor-alpha/*pharmacology},
pubstate = {published},
tppubtype = {article}
}