2018
Šimečková, Šárka; Fedr, Radek; Remšík, Ján; Kahounová, Zuzana; Slabáková, Eva; Souček, Karel
Multiparameter cytometric analysis of complex cellular response. Journal Article
In: Cytometry. Part A : the journal of the International Society for Analytical Cytology, vol. 93, no. 2, pp. 239–248, 2018, ISSN: 1552-4930 1552-4922, (Place: United States).
Abstract | Links | BibTeX | Tags: Apoptosis, Apoptosis/*physiology, Cell Line, Cell Proliferation/*physiology, DNA Damage, DNA Damage/*physiology, Flow Cytometry, Flow Cytometry/*methods, Humans, immunophenotyping, Immunophenotyping/*methods, multiparametric analysis, proliferation, Tumor
@article{simeckova_multiparameter_2018,
title = {Multiparameter cytometric analysis of complex cellular response.},
author = {Šárka Šimečková and Radek Fedr and Ján Remšík and Zuzana Kahounová and Eva Slabáková and Karel Souček},
doi = {10.1002/cyto.a.23295},
issn = {1552-4930 1552-4922},
year = {2018},
date = {2018-02-01},
journal = {Cytometry. Part A : the journal of the International Society for Analytical Cytology},
volume = {93},
number = {2},
pages = {239–248},
abstract = {Complex analysis of cellular responses after experimental treatment is important for screening, mechanistic understanding of treatment effects, and the identification of sensitive and resistant cell phenotypes. Modern multicolor flow cytometry has demonstrated its power for such analyses. Here, we introduce a multiparametric protocol for complex analysis of cytokinetics by the simultaneous detection of seven fluorescence parameters. This analysis includes the detection of two surface markers for immunophenotyping, analysis of proliferation based on the cell cycle and the measurement of incorporated nucleoside analogue 5-ethynyl-2'-deoxyuridine (EdU) in newly synthesized DNA, analysis of DNA damage using an anti-phospho-histone H2A.X (Ser139) antibody, and determination of cell death using a fixable viability probe and intracellular detection of caspase-3 activation. To demonstrate the applicability of this protocol for the analysis of heterogeneous and complex cell responses, we used different treatments and model cell lines. We demonstrated that this protocol has the potential to provide complex and simultaneous analysis of cytokinetics and analyze the heterogeneity of the response at the single-cell level. © 2017 International Society for Advancement of Cytometry.},
note = {Place: United States},
keywords = {Apoptosis, Apoptosis/*physiology, Cell Line, Cell Proliferation/*physiology, DNA Damage, DNA Damage/*physiology, Flow Cytometry, Flow Cytometry/*methods, Humans, immunophenotyping, Immunophenotyping/*methods, multiparametric analysis, proliferation, Tumor},
pubstate = {published},
tppubtype = {article}
}
2013
Fedr, Radek; Pernicová, Zuzana; Slabáková, Eva; Straková, Nicol; Bouchal, Jan; Grepl, Michal; Kozubík, Alois; Souček, Karel
Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells. Journal Article
In: Cytometry. Part A : the journal of the International Society for Analytical Cytology, vol. 83, no. 5, pp. 472–482, 2013, ISSN: 1552-4930 1552-4922, (Place: United States).
Abstract | Links | BibTeX | Tags: *Cell Proliferation, AC133 Antigen, Antigens, Biomarkers, CD/metabolism, Cell Adhesion Molecules/metabolism, Cell Line, Cell Survival, Colonic Neoplasms/metabolism/*pathology, Flow Cytometry/*methods, Glycoproteins/metabolism, Humans, Hyaluronan Receptors/metabolism, In Vitro Techniques, Integrin alpha6/metabolism, Male, Neoplasm/metabolism, Neoplastic Stem Cells/metabolism/*pathology, Peptides/metabolism, Prostatic Neoplasms/metabolism/*pathology, Tumor, Tumor Stem Cell Assay/*methods, Tumor/metabolism
@article{fedr_automatic_2013,
title = {Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells.},
author = {Radek Fedr and Zuzana Pernicová and Eva Slabáková and Nicol Straková and Jan Bouchal and Michal Grepl and Alois Kozubík and Karel Souček},
doi = {10.1002/cyto.a.22273},
issn = {1552-4930 1552-4922},
year = {2013},
date = {2013-05-01},
journal = {Cytometry. Part A : the journal of the International Society for Analytical Cytology},
volume = {83},
number = {5},
pages = {472–482},
abstract = {The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples.},
note = {Place: United States},
keywords = {*Cell Proliferation, AC133 Antigen, Antigens, Biomarkers, CD/metabolism, Cell Adhesion Molecules/metabolism, Cell Line, Cell Survival, Colonic Neoplasms/metabolism/*pathology, Flow Cytometry/*methods, Glycoproteins/metabolism, Humans, Hyaluronan Receptors/metabolism, In Vitro Techniques, Integrin alpha6/metabolism, Male, Neoplasm/metabolism, Neoplastic Stem Cells/metabolism/*pathology, Peptides/metabolism, Prostatic Neoplasms/metabolism/*pathology, Tumor, Tumor Stem Cell Assay/*methods, Tumor/metabolism},
pubstate = {published},
tppubtype = {article}
}