2024
Pícková, Markéta; Kahounová, Zuzana; Radaszkiewicz, Tomasz; Procházková, Jiřina; Fedr, Radek; Nosková, Michaela; Radaszkiewicz, Katarzyna Anna; Ovesná, Petra; Bryja, Vítězslav; Souček, Karel
Orthotopic model for the analysis of melanoma circulating tumor cells. Journal Article
In: Scientific reports, vol. 14, no. 1, pp. 7827, 2024, ISSN: 2045-2322, (Place: England).
Abstract | Links | BibTeX | Tags: *Melanoma/pathology, *Neoplastic Cells, *Skin Neoplasms/pathology, Animals, Circulating tumor cells, Circulating/pathology, Flow Cytometry, Humans, In vivo model, Lymphatic Metastasis, Melanoma, Metastasis, Tumorectomy
@article{pickova_orthotopic_2024,
title = {Orthotopic model for the analysis of melanoma circulating tumor cells.},
author = {Markéta Pícková and Zuzana Kahounová and Tomasz Radaszkiewicz and Jiřina Procházková and Radek Fedr and Michaela Nosková and Katarzyna Anna Radaszkiewicz and Petra Ovesná and Vítězslav Bryja and Karel Souček},
doi = {10.1038/s41598-024-58236-y},
issn = {2045-2322},
year = {2024},
date = {2024-04-01},
journal = {Scientific reports},
volume = {14},
number = {1},
pages = {7827},
abstract = {Metastatic melanoma, a highly lethal form of skin cancer, presents significant clinical challenges due to limited therapeutic options and high metastatic capacity. Recent studies have demonstrated that cancer dissemination can occur earlier, before the diagnosis of the primary tumor. The progress in understanding the kinetics of cancer dissemination is limited by the lack of animal models that accurately mimic disease progression. We have established a xenograft model of human melanoma that spontaneously metastasizes to lymph nodes and lungs. This model allows precise monitoring of melanoma progression and is suitable for the quantitative and qualitative analysis of circulating tumor cells (CTCs). We have validated a flow cytometry-based protocol for CTCs enumeration and isolation. We could demonstrate that (i) CTCs were detectable in the bloodstream from the fourth week after tumor initiation, coinciding with the lymph node metastases appearance, (ii) excision of the primary tumor accelerated the formation of metastases in lymph nodes and lungs as early as one-week post-surgery, accompanied by the increased numbers of CTCs, and (iii) CTCs change their surface protein signature. In summary, we present a model of human melanoma that can be effectively utilized for future drug efficacy studies.},
note = {Place: England},
keywords = {*Melanoma/pathology, *Neoplastic Cells, *Skin Neoplasms/pathology, Animals, Circulating tumor cells, Circulating/pathology, Flow Cytometry, Humans, In vivo model, Lymphatic Metastasis, Melanoma, Metastasis, Tumorectomy},
pubstate = {published},
tppubtype = {article}
}
2022
Drápela, Stanislav; Fedr, Radek; Vacek, Ondřej; Remšík, Ján; Souček, Karel
High-Throughput, Parallel Flow Cytometry Screening of Hundreds of Cell Surface Antigens Using Fluorescent Barcoding. Journal Article
In: Methods in molecular biology (Clifton, N.J.), vol. 2543, pp. 99–111, 2022, ISSN: 1940-6029 1064-3745, (Place: United States).
Abstract | Links | BibTeX | Tags: *Antigens, *Research, Biomarkers/analysis, Cell surface phenotyping, Flow Cytometry, Fluorescent cell barcoding, Fluorescent Dyes, High-throughput screening, Multicolor flow cytometry, Surface
@article{drapela_high-throughput_2022,
title = {High-Throughput, Parallel Flow Cytometry Screening of Hundreds of Cell Surface Antigens Using Fluorescent Barcoding.},
author = {Stanislav Drápela and Radek Fedr and Ondřej Vacek and Ján Remšík and Karel Souček},
doi = {10.1007/978-1-0716-2553-8_9},
issn = {1940-6029 1064-3745},
year = {2022},
date = {2022-01-01},
journal = {Methods in molecular biology (Clifton, N.J.)},
volume = {2543},
pages = {99–111},
abstract = {Multicolor flow cytometry allows for analysis of tens of cellular parameters in millions of cells at a single-cell resolution within minutes. The lack of technologies that would facilitate feasible and relatively cheap profiling of such a number of cells with an antibody-based approach led us to the development of a high-throughput cytometry-based platform for surface profiling. We coupled the fluorescent cell barcoding with preexisting, commercially available screening tools to analyze cell surface fingerprint at a large scale. This powerful approach will help to identify novel biomarkers and druggable targets and facilitate the discovery of new concepts in immunology, oncology, and developmental biology.},
note = {Place: United States},
keywords = {*Antigens, *Research, Biomarkers/analysis, Cell surface phenotyping, Flow Cytometry, Fluorescent cell barcoding, Fluorescent Dyes, High-throughput screening, Multicolor flow cytometry, Surface},
pubstate = {published},
tppubtype = {article}
}
2018
Remšík, Ján; Fedr, Radek; Navrátil, Jiří; Binó, Lucia; Slabáková, Eva; Fabian, Pavel; Svoboda, Marek; Souček, Karel
Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Journal Article
In: British journal of cancer, vol. 118, no. 6, pp. 813–819, 2018, ISSN: 1532-1827 0007-0920, (Place: England).
Abstract | Links | BibTeX | Tags: Antigens, Biomarkers, Breast Neoplasms/*genetics/*immunology/pathology, Cell Line, Cell Plasticity/immunology, Cellular Reprogramming/physiology, Epithelial-Mesenchymal Transition/immunology, Female, Flow Cytometry, Genetic, High-Throughput Screening Assays, Humans, Neoplasm Metastasis, Neoplasm/*biosynthesis/immunology, Surface/*biosynthesis/immunology, Tetraspanin 29/biosynthesis/immunology, Transcription, Tumor
@article{remsik_plasticity_2018,
title = {Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer.},
author = {Ján Remšík and Radek Fedr and Jiří Navrátil and Lucia Binó and Eva Slabáková and Pavel Fabian and Marek Svoboda and Karel Souček},
doi = {10.1038/bjc.2017.497},
issn = {1532-1827 0007-0920},
year = {2018},
date = {2018-03-01},
journal = {British journal of cancer},
volume = {118},
number = {6},
pages = {813–819},
abstract = {Background:The intratumoural heterogeneity, often driven by epithelial-to-mesenchymal transition (EMT), significantly contributes to chemoresistance and disease progression in adenocarcinomas. Methods:We introduced a high-throughput screening platform to identify surface antigens that associate with epithelial–mesenchymal plasticity in well-defined pairs of epithelial cell lines and their mesenchymal counterparts. Using multicolour flow cytometry, we then analysed the expression of 10 most robustly changed antigens and identified a 10-molecule surface signature, in pan-cytokeratin-positive/EpCAM-positive and -negative fractions of dissociated breast tumours. Results:We found that surface CD9, CD29, CD49c, and integrin ß5 are lost in breast cancer cells that underwent EMT in vivo. The tetraspanin family member CD9 was concordantly downregulated both in vitro and in vivo and associated with epithelial phenotype and favourable prognosis. Conclusions:We propose that overall landscape of 10-molecule surface signature expression reflects the epithelial–mesenchymal plasticity in breast cancer.},
note = {Place: England},
keywords = {Antigens, Biomarkers, Breast Neoplasms/*genetics/*immunology/pathology, Cell Line, Cell Plasticity/immunology, Cellular Reprogramming/physiology, Epithelial-Mesenchymal Transition/immunology, Female, Flow Cytometry, Genetic, High-Throughput Screening Assays, Humans, Neoplasm Metastasis, Neoplasm/*biosynthesis/immunology, Surface/*biosynthesis/immunology, Tetraspanin 29/biosynthesis/immunology, Transcription, Tumor},
pubstate = {published},
tppubtype = {article}
}
Šimečková, Šárka; Fedr, Radek; Remšík, Ján; Kahounová, Zuzana; Slabáková, Eva; Souček, Karel
Multiparameter cytometric analysis of complex cellular response. Journal Article
In: Cytometry. Part A : the journal of the International Society for Analytical Cytology, vol. 93, no. 2, pp. 239–248, 2018, ISSN: 1552-4930 1552-4922, (Place: United States).
Abstract | Links | BibTeX | Tags: Apoptosis, Apoptosis/*physiology, Cell Line, Cell Proliferation/*physiology, DNA Damage, DNA Damage/*physiology, Flow Cytometry, Flow Cytometry/*methods, Humans, immunophenotyping, Immunophenotyping/*methods, multiparametric analysis, proliferation, Tumor
@article{simeckova_multiparameter_2018,
title = {Multiparameter cytometric analysis of complex cellular response.},
author = {Šárka Šimečková and Radek Fedr and Ján Remšík and Zuzana Kahounová and Eva Slabáková and Karel Souček},
doi = {10.1002/cyto.a.23295},
issn = {1552-4930 1552-4922},
year = {2018},
date = {2018-02-01},
journal = {Cytometry. Part A : the journal of the International Society for Analytical Cytology},
volume = {93},
number = {2},
pages = {239–248},
abstract = {Complex analysis of cellular responses after experimental treatment is important for screening, mechanistic understanding of treatment effects, and the identification of sensitive and resistant cell phenotypes. Modern multicolor flow cytometry has demonstrated its power for such analyses. Here, we introduce a multiparametric protocol for complex analysis of cytokinetics by the simultaneous detection of seven fluorescence parameters. This analysis includes the detection of two surface markers for immunophenotyping, analysis of proliferation based on the cell cycle and the measurement of incorporated nucleoside analogue 5-ethynyl-2'-deoxyuridine (EdU) in newly synthesized DNA, analysis of DNA damage using an anti-phospho-histone H2A.X (Ser139) antibody, and determination of cell death using a fixable viability probe and intracellular detection of caspase-3 activation. To demonstrate the applicability of this protocol for the analysis of heterogeneous and complex cell responses, we used different treatments and model cell lines. We demonstrated that this protocol has the potential to provide complex and simultaneous analysis of cytokinetics and analyze the heterogeneity of the response at the single-cell level. © 2017 International Society for Advancement of Cytometry.},
note = {Place: United States},
keywords = {Apoptosis, Apoptosis/*physiology, Cell Line, Cell Proliferation/*physiology, DNA Damage, DNA Damage/*physiology, Flow Cytometry, Flow Cytometry/*methods, Humans, immunophenotyping, Immunophenotyping/*methods, multiparametric analysis, proliferation, Tumor},
pubstate = {published},
tppubtype = {article}
}
2011
Pernicová, Zuzana; Slabáková, Eva; Kharaishvili, Gvantsa; Bouchal, Jan; Král, Milan; Kunická, Zuzana; Machala, Miroslav; Kozubík, Alois; Souček, Karel
Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Journal Article
In: Neoplasia (New York, N.Y.), vol. 13, no. 6, pp. 526–536, 2011, ISSN: 1476-5586 1522-8002, (Place: United States).
Abstract | Links | BibTeX | Tags: Androgen Antagonists/*pharmacology, Androgen/metabolism, beta-Galactosidase/metabolism, Blotting, Cathepsin B/metabolism, Cell Line, Cellular Senescence/*drug effects, Confocal, Down-Regulation/*drug effects, Flow Cytometry, Humans, Insulin-Like Growth Factor Binding Protein 3/metabolism, Male, Microscopy, Prostatic Neoplasms/genetics/metabolism/pathology, PTEN Phosphohydrolase/metabolism, Receptors, RNA Interference, S-Phase Kinase-Associated Proteins/genetics/*metabolism, Signal Transduction/drug effects, Tumor, Vimentin/metabolism, Western
@article{pernicova_androgen_2011,
title = {Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2.},
author = {Zuzana Pernicová and Eva Slabáková and Gvantsa Kharaishvili and Jan Bouchal and Milan Král and Zuzana Kunická and Miroslav Machala and Alois Kozubík and Karel Souček},
doi = {10.1593/neo.11182},
issn = {1476-5586 1522-8002},
year = {2011},
date = {2011-06-01},
journal = {Neoplasia (New York, N.Y.)},
volume = {13},
number = {6},
pages = {526–536},
abstract = {Although the induction of senescence in cancer cells is a potent mechanism of tumor suppression, senescent cells remain metabolically active and may secrete a broad spectrum of factors that promote tumorigenicity in neighboring malignant cells. Here we show that androgen deprivation therapy (ADT), a widely used treatment for advanced prostate cancer, induces a senescence-associated secretory phenotype in prostate cancer epithelial cells, indicated by increases in senescence-associated β-galactosidase activity, heterochromatin protein 1β foci, and expression of cathepsin B and insulin-like growth factor binding protein 3. Interestingly, ADT also induced high levels of vimentin expression in prostate cancer cell lines in vitro and in human prostate tumors in vivo. The induction of the senescence-associated secretory phenotype by androgen depletion was mediated, at least in part, by down-regulation of S-phase kinase-associated protein 2, whereas the neuroendocrine differentiation of prostate cancer cells was under separate control. These data demonstrate a previously unrecognized link between inhibition of androgen receptor signaling, down-regulation of S-phase kinase-associated protein 2, and the appearance of secretory, tumor-promoting senescent cells in prostate tumors. We propose that ADT may contribute to the development of androgen-independent prostate cancer through modulation of the tissue microenvironment by senescent cells.},
note = {Place: United States},
keywords = {Androgen Antagonists/*pharmacology, Androgen/metabolism, beta-Galactosidase/metabolism, Blotting, Cathepsin B/metabolism, Cell Line, Cellular Senescence/*drug effects, Confocal, Down-Regulation/*drug effects, Flow Cytometry, Humans, Insulin-Like Growth Factor Binding Protein 3/metabolism, Male, Microscopy, Prostatic Neoplasms/genetics/metabolism/pathology, PTEN Phosphohydrolase/metabolism, Receptors, RNA Interference, S-Phase Kinase-Associated Proteins/genetics/*metabolism, Signal Transduction/drug effects, Tumor, Vimentin/metabolism, Western},
pubstate = {published},
tppubtype = {article}
}
Blanárová, Olga Vondálová; Jelínková, Iva; Szöor, Arpád; Skender, Belma; Soucek, Karel; Horváth, Viktor; Vaculová, Alena; Andera, Ladislav; Sova, Petr; Szöllosi, János; Hofmanová, Jirina; Vereb, György; Kozubík, Alois
In: Carcinogenesis, vol. 32, no. 1, pp. 42–51, 2011, ISSN: 1460-2180 0143-3334, (Place: England).
Abstract | Links | BibTeX | Tags: Amantadine/*analogs & derivatives/pharmacology, Apoptosis/*drug effects/physiology, Blotting, Cell Line, Cell Separation, Cisplatin/*pharmacology, Confocal, Flow Cytometry, Fluorescent Antibody Technique, Humans, Microscopy, Neoplasms/*metabolism, Organoplatinum Compounds/*pharmacology, Protein Transport/drug effects, Receptors, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Signal Transduction/*drug effects/physiology, TNF-Related Apoptosis-Inducing Ligand/*metabolism, TNF-Related Apoptosis-Inducing Ligand/metabolism, Tumor, Western
@article{vondalova_blanarova_cisplatin_2011,
title = {Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway.},
author = {Olga Vondálová Blanárová and Iva Jelínková and Arpád Szöor and Belma Skender and Karel Soucek and Viktor Horváth and Alena Vaculová and Ladislav Andera and Petr Sova and János Szöllosi and Jirina Hofmanová and György Vereb and Alois Kozubík},
doi = {10.1093/carcin/bgq220},
issn = {1460-2180 0143-3334},
year = {2011},
date = {2011-01-01},
journal = {Carcinogenesis},
volume = {32},
number = {1},
pages = {42–51},
abstract = {TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) can selectively trigger apoptosis in various cancer cell types. However, many cancer cells are resistant to death receptor-mediated apoptosis. Combination therapy with platinum complexes may affect TRAIL-induced signaling via modulation of various steps in apoptotic pathways. Here, we show that cisplatin or a more potent platinum(IV) complex LA-12 used in 20-fold lower concentration enhanced killing effects of TRAIL in human colon and prostate cancer cell lines via stimulation of caspase activity and overall apoptosis. Both platinum complexes increased DR5 surface expression in colon cancer cells. Small interfering RNA-mediated DR5 silencing rescued cells from sensitizing effects of platinum drugs on TRAIL-induced caspase-8 activation and apoptosis, showing the functional importance of DR5 in the effects observed. In addition, both cisplatin and LA-12 triggered the relocalization of DR4 and DR5 receptors to lipid rafts and accelerated internalization of TRAIL, which may also affect TRAIL signaling. Collectively, modulations of the initial steps of the extrinsic apoptotic pathway at the level of DR5 and plasma membrane are important for sensitization of colon and prostate cancer cells to TRAIL-induced apoptosis mediated by LA-12 and cisplatin.},
note = {Place: England},
keywords = {Amantadine/*analogs & derivatives/pharmacology, Apoptosis/*drug effects/physiology, Blotting, Cell Line, Cell Separation, Cisplatin/*pharmacology, Confocal, Flow Cytometry, Fluorescent Antibody Technique, Humans, Microscopy, Neoplasms/*metabolism, Organoplatinum Compounds/*pharmacology, Protein Transport/drug effects, Receptors, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Signal Transduction/*drug effects/physiology, TNF-Related Apoptosis-Inducing Ligand/*metabolism, TNF-Related Apoptosis-Inducing Ligand/metabolism, Tumor, Western},
pubstate = {published},
tppubtype = {article}
}
2010
Uhlírová, Radka; Horáková, Andrea Harnicarová; Galiová, Gabriela; Legartová, Sona; Matula, Pavel; Fojtová, Miloslava; Varecha, Miroslav; Amrichová, Jana; Vondrácek, Jan; Kozubek, Stanislav; Bártová, Eva
SUV39h- and A-type lamin-dependent telomere nuclear rearrangement. Journal Article
In: Journal of cellular biochemistry, vol. 109, no. 5, pp. 915–926, 2010, ISSN: 1097-4644 0730-2312, (Place: United States).
Abstract | Links | BibTeX | Tags: *Gene Rearrangement, Animals, DNA-Binding Proteins/metabolism, Epigenesis, Fibroblasts/metabolism, Flow Cytometry, Genetic, Humans, Intranuclear Inclusion Bodies/metabolism, Lamin Type A/*metabolism, Methyltransferases/*metabolism, Mice, Protein Transport, rap1 GTP-Binding Proteins/metabolism, Repressor Proteins/*metabolism, Shelterin Complex, Telomerase/metabolism, Telomere-Binding Proteins, Telomere/genetics/*metabolism, Telomeric Repeat Binding Protein 1/metabolism
@article{uhlirova_suv39h-_2010,
title = {SUV39h- and A-type lamin-dependent telomere nuclear rearrangement.},
author = {Radka Uhlírová and Andrea Harnicarová Horáková and Gabriela Galiová and Sona Legartová and Pavel Matula and Miloslava Fojtová and Miroslav Varecha and Jana Amrichová and Jan Vondrácek and Stanislav Kozubek and Eva Bártová},
doi = {10.1002/jcb.22466},
issn = {1097-4644 0730-2312},
year = {2010},
date = {2010-04-01},
journal = {Journal of cellular biochemistry},
volume = {109},
number = {5},
pages = {915–926},
abstract = {Telomeres are specialized chromatin structures that are situated at the end of linear chromosomes and play an important role in cell senescence and immortalization. Here, we investigated whether changes in histone signature influence the nuclear arrangement and positioning of telomeres. Analysis of mouse embryonic fibroblasts revealed that telomeres were organized into specific clusters that partially associated with centromeric clusters. This nuclear arrangement was influenced by deficiency of the histone methyltransferase SUV39h, LMNA deficiency, and the histone deacetylase inhibitor Trichostatin A (TSA). Similarly, nuclear radial distributions of telomeric clusters were preferentially influenced by TSA, which caused relocation of telomeres closer to the nuclear center. Telomeres also co-localized with promyelocytic leukemia bodies (PML). This association was increased by SUV39h deficiency and decreased by LMNA deficiency. These differences could be explained by differing levels of the telomerase subunit, TERT, in SUV39h- and LMNA-deficient fibroblasts. Taken together, our data show that SUV39h and A-type lamins likely play a key role in telomere maintenance and telomere nuclear architecture.},
note = {Place: United States},
keywords = {*Gene Rearrangement, Animals, DNA-Binding Proteins/metabolism, Epigenesis, Fibroblasts/metabolism, Flow Cytometry, Genetic, Humans, Intranuclear Inclusion Bodies/metabolism, Lamin Type A/*metabolism, Methyltransferases/*metabolism, Mice, Protein Transport, rap1 GTP-Binding Proteins/metabolism, Repressor Proteins/*metabolism, Shelterin Complex, Telomerase/metabolism, Telomere-Binding Proteins, Telomere/genetics/*metabolism, Telomeric Repeat Binding Protein 1/metabolism},
pubstate = {published},
tppubtype = {article}
}