2014
Steinmetz, Birgit; Hackl, Hubert; Slabáková, Eva; Schwarzinger, Ilse; Smějová, Monika; Spittler, Andreas; Arbesu, Itziar; Shehata, Medhat; Souček, Karel; Wieser, Rotraud
The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid. Journal Article
In: Cell cycle (Georgetown, Tex.), vol. 13, no. 18, pp. 2931–2943, 2014, ISSN: 1551-4005 1538-4101, (Place: United States).
Abstract | Links | BibTeX | Tags: *Oncogenes, acute myeloid leukemia, acute promyelocytic leukemia, all-trans retinoic acid, AML, APL, Apoptosis, Apoptosis/drug effects, Ar, ATRA, ATRA regulation, Cell Cycle, Cell Cycle Checkpoints/drug effects, Cell Differentiation/drug effects, dimethyl sulfoxide, DMSO, DNA-Binding Proteins/genetics/*metabolism, Down-Regulation/drug effects, Em, Epithelial Cells/drug effects/metabolism, Er, EVI1, EVI1 modulation, EVI1 regulation, false discovery rate, FBS, FC, FDR, fetal bovine serum, fold change, GDF15, Gene Expression Profiling, Gene Knockdown Techniques, Genetic/*drug effects, GFP, green fluorescent protein, Growth Differentiation Factor 15/genetics/metabolism, HL-60 Cells, Humans, mcoEvi1, MDS, MDS1 and EVI1 Complex Locus Protein, murine codon optimized Evi1, myelodysplastic syndrome, Myeloid Cells/drug effects/*metabolism, myeloid differentiation, penicillin streptomycin glutamine, Proto-Oncogenes/genetics, PSG, RAR, RARE, Real-Time Polymerase Chain Reaction, Reproducibility of Results, retinoic acid receptor, retinoic acid response element, SE, standard error, Transcription, Transcription Factors/genetics/*metabolism, Tretinoin/*pharmacology
@article{steinmetz_oncogene_2014,
title = {The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid.},
author = {Birgit Steinmetz and Hubert Hackl and Eva Slabáková and Ilse Schwarzinger and Monika Smějová and Andreas Spittler and Itziar Arbesu and Medhat Shehata and Karel Souček and Rotraud Wieser},
doi = {10.4161/15384101.2014.946869},
issn = {1551-4005 1538-4101},
year = {2014},
date = {2014-01-01},
journal = {Cell cycle (Georgetown, Tex.)},
volume = {13},
number = {18},
pages = {2931–2943},
abstract = {The product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARβ gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-β superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects. The potential clinical implications of these findings are discussed.},
note = {Place: United States},
keywords = {*Oncogenes, acute myeloid leukemia, acute promyelocytic leukemia, all-trans retinoic acid, AML, APL, Apoptosis, Apoptosis/drug effects, Ar, ATRA, ATRA regulation, Cell Cycle, Cell Cycle Checkpoints/drug effects, Cell Differentiation/drug effects, dimethyl sulfoxide, DMSO, DNA-Binding Proteins/genetics/*metabolism, Down-Regulation/drug effects, Em, Epithelial Cells/drug effects/metabolism, Er, EVI1, EVI1 modulation, EVI1 regulation, false discovery rate, FBS, FC, FDR, fetal bovine serum, fold change, GDF15, Gene Expression Profiling, Gene Knockdown Techniques, Genetic/*drug effects, GFP, green fluorescent protein, Growth Differentiation Factor 15/genetics/metabolism, HL-60 Cells, Humans, mcoEvi1, MDS, MDS1 and EVI1 Complex Locus Protein, murine codon optimized Evi1, myelodysplastic syndrome, Myeloid Cells/drug effects/*metabolism, myeloid differentiation, penicillin streptomycin glutamine, Proto-Oncogenes/genetics, PSG, RAR, RARE, Real-Time Polymerase Chain Reaction, Reproducibility of Results, retinoic acid receptor, retinoic acid response element, SE, standard error, Transcription, Transcription Factors/genetics/*metabolism, Tretinoin/*pharmacology},
pubstate = {published},
tppubtype = {article}
}
2009
Stixová, Lenka; Procházková, Jirina; Soucek, Karel; Hofmanová, Jirina; Kozubík, Alois
5-Lipoxygenase inhibitors potentiate 1alpha,25-dihydroxyvitamin D3-induced monocytic differentiation by activating p38 MAPK pathway. Journal Article
In: Molecular and cellular biochemistry, vol. 330, no. 1-2, pp. 229–238, 2009, ISSN: 1573-4919 0300-8177, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Arachidonate 5-Lipoxygenase/*genetics, Benzoquinones/pharmacology, Cell Differentiation/*drug effects, HL-60 Cells, Humans, Indoles/pharmacology, Lipoxygenase Inhibitors/*pharmacology, Monocytes/*cytology, p38 Mitogen-Activated Protein Kinases/*metabolism, Vitamin D/*analogs & derivatives/pharmacology
@article{stixova_5-lipoxygenase_2009,
title = {5-Lipoxygenase inhibitors potentiate 1alpha,25-dihydroxyvitamin D3-induced monocytic differentiation by activating p38 MAPK pathway.},
author = {Lenka Stixová and Jirina Procházková and Karel Soucek and Jirina Hofmanová and Alois Kozubík},
doi = {10.1007/s11010-009-0138-x},
issn = {1573-4919 0300-8177},
year = {2009},
date = {2009-10-01},
journal = {Molecular and cellular biochemistry},
volume = {330},
number = {1-2},
pages = {229–238},
abstract = {The treatment of human promyelocytic leukemia cell lines HL-60, and to some extent NB-4, with 1alpha,25-dihydroxyvitamin D(3) (VD3) induces differentiation toward the monocytic/macrophage lineage, demonstrated by the increased expression of CD11b and CD14, and the production of opsonized zymosan particles (OZP)-stimulated reactive oxygen species (ROS). Moreover, in more sensitive HL-60 cells, increased expression of 5-lipoxygenase (5-LPO), Mcl-1, IkappaB, and c-Jun, accompanied by the activation of p38 MAPK, was detected. These VD3 effects on HL-60 cell differentiation were significantly potentiated by 5-LPO inhibitors MK-886 and AA-861 and were inverted by SB202190 (SB), a p38 MAPK inhibitor. The inhibition of differentiation by SB was demonstrated by a reduction of CD14 expression and by a decrease in OZP-activated ROS production. These results indicated that p38 MAPK pathway is involved in 5-LPO inhibitors-dependent potentiation of VD3-induced monocytic differentiation.},
note = {Place: Netherlands},
keywords = {Arachidonate 5-Lipoxygenase/*genetics, Benzoquinones/pharmacology, Cell Differentiation/*drug effects, HL-60 Cells, Humans, Indoles/pharmacology, Lipoxygenase Inhibitors/*pharmacology, Monocytes/*cytology, p38 Mitogen-Activated Protein Kinases/*metabolism, Vitamin D/*analogs & derivatives/pharmacology},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jirina; Stixová, Lenka; Soucek, Karel; Hofmanová, Jirina; Kozubík, Alois
In: European journal of haematology, vol. 83, no. 1, pp. 35–47, 2009, ISSN: 1600-0609 0902-4441, (Place: England).
Abstract | Links | BibTeX | Tags: Acute/*drug therapy/metabolism/*pathology, Amino Acid Chloromethyl Ketones/pharmacology, Apoptosis/*drug effects/physiology, Caspase Inhibitors, Caspases/metabolism, Cell Differentiation/drug effects, Cysteine Proteinase Inhibitors/pharmacology, Enzyme Activation/drug effects, HL-60 Cells, Humans, Indoles/*pharmacology, Leukemia, Lipoxygenase Inhibitors/pharmacology, MAP Kinase Signaling System/drug effects, Monocytes/*drug effects/pathology, NF-kappa B/antagonists & inhibitors, Promyelocytic, Tumor Necrosis Factor-alpha/*pharmacology
@article{prochazkova_monocytic_2009,
title = {Monocytic differentiation of leukemic HL-60 cells induced by co-treatment with TNF-alpha and MK886 requires activation of pro-apoptotic machinery.},
author = {Jirina Procházková and Lenka Stixová and Karel Soucek and Jirina Hofmanová and Alois Kozubík},
doi = {10.1111/j.1600-0609.2009.01240.x},
issn = {1600-0609 0902-4441},
year = {2009},
date = {2009-07-01},
journal = {European journal of haematology},
volume = {83},
number = {1},
pages = {35–47},
abstract = {The block of hematopoietic differentiation program in acute myeloid leukemia cells can be overcome by differentiating agent like retinoic acid, but it has several side effects. A study of other differentiation signaling pathways is therefore useful to predict potential targets of anti-leukemic therapy. We demonstrated previously that the co-treatment of HL-60 cells with Tumor necrosis factor-alpha (TNF-alpha) (1 ng/mL) and inhibitor of 5-lipoxygenase MK886 (5 microm) potentiated both monocytic differentiation and apoptosis. In this study, we detected enhanced activation of three main types of mitogen-activated protein kinases (MAPKs) (p38, c-Jun amino-terminal kinase [JNK], extracellular signal-regulated kinase [ERK]), so we assessed their role in differentiation using appropriate pharmacologic inhibitors. The inhibition of pro-apoptotic MAPKs (p38 and JNK) suppressed the effect of MK886 + TNF-alpha co-treatment. On the other hand, down-regulation of pro-survival ERK pathway led to increased differentiation. Those effects were accompanied by increased activation of caspases in cells treated by MK886 + TNF-alpha. Pan-caspase inhibitor ZVAD-fmk significantly decreased both number of apoptotic and differentiated cells. The same effect was observed after inhibition of caspase 9, but not caspase 3 and 8. To conclude, we evidenced that the activation of apoptotic processes and pathways supporting apoptosis (p38 and JNK MAPKs) is required for the monocytic differentiation of HL-60 cells.},
note = {Place: England},
keywords = {Acute/*drug therapy/metabolism/*pathology, Amino Acid Chloromethyl Ketones/pharmacology, Apoptosis/*drug effects/physiology, Caspase Inhibitors, Caspases/metabolism, Cell Differentiation/drug effects, Cysteine Proteinase Inhibitors/pharmacology, Enzyme Activation/drug effects, HL-60 Cells, Humans, Indoles/*pharmacology, Leukemia, Lipoxygenase Inhibitors/pharmacology, MAP Kinase Signaling System/drug effects, Monocytes/*drug effects/pathology, NF-kappa B/antagonists & inhibitors, Promyelocytic, Tumor Necrosis Factor-alpha/*pharmacology},
pubstate = {published},
tppubtype = {article}
}
2006
Stika, Jirí; Vondrácek, Jan; Hofmanová, Jirina; Simek, Vladimír; Kozubík, Alois
MK-886 enhances tumour necrosis factor-alpha-induced differentiation and apoptosis. Journal Article
In: Cancer letters, vol. 237, no. 2, pp. 263–271, 2006, ISSN: 0304-3835, (Place: Ireland).
Abstract | Links | BibTeX | Tags: *Apoptosis, Arachidonate 5-Lipoxygenase/metabolism, Cell Cycle, Cell Differentiation, Cell Line, Cell Survival, HL-60 Cells, Humans, Indoles/*pharmacology, Lipoxygenase Inhibitors/*pharmacology, Signal Transduction, Time Factors, Tumor, Tumor Necrosis Factor-alpha/*metabolism
@article{stika_mk-886_2006,
title = {MK-886 enhances tumour necrosis factor-alpha-induced differentiation and apoptosis.},
author = {Jirí Stika and Jan Vondrácek and Jirina Hofmanová and Vladimír Simek and Alois Kozubík},
doi = {10.1016/j.canlet.2005.06.012},
issn = {0304-3835},
year = {2006},
date = {2006-06-01},
journal = {Cancer letters},
volume = {237},
number = {2},
pages = {263–271},
abstract = {We investigated the role of the 5-lipoxygenase (5-LOX) pathway of arachidonic acid metabolism in tumour necrosis factor-alpha (TNF-alpha)-induced differentiation of human leukemic HL-60 cells using MK-886, an inhibitor of 5-LOX activating protein. MK-886 augmented cell cycle arrest and differentiation induced by TNF-alpha; however, both effects were probably 5-LOX-independent, because a general LOX inhibitor, NDGA, had no effect. Apoptosis was significantly elevated after combined TNF-alpha and MK-886 treatment, which could be partially associated with changes of Mcl-1 protein expression. NF-kappaB signalling or activation of JNKs were not modulated by MK-886. Thus, in addition to apoptosis, MK-886 can enhance TNF-alpha-induced differentiation.},
note = {Place: Ireland},
keywords = {*Apoptosis, Arachidonate 5-Lipoxygenase/metabolism, Cell Cycle, Cell Differentiation, Cell Line, Cell Survival, HL-60 Cells, Humans, Indoles/*pharmacology, Lipoxygenase Inhibitors/*pharmacology, Signal Transduction, Time Factors, Tumor, Tumor Necrosis Factor-alpha/*metabolism},
pubstate = {published},
tppubtype = {article}
}
Soucek, Karel; Pacherník, Jirí; Kubala, Lukás; Vondrácek, Jan; Hofmanová, Jirina; Kozubík, Alois
Transforming growth factor-beta1 inhibits all-trans retinoic acid-induced apoptosis. Journal Article
In: Leukemia research, vol. 30, no. 5, pp. 607–623, 2006, ISSN: 0145-2126, (Place: England).
Abstract | Links | BibTeX | Tags: Apoptosis Regulatory Proteins/metabolism/pharmacology, Apoptosis/*drug effects/physiology, bcl-2-Associated X Protein/drug effects/metabolism, CASP8 and FADD-Like Apoptosis Regulating Protein, Caspase 3, Caspase 8, Caspases/drug effects/metabolism, CD11b Antigen/biosynthesis/drug effects, Cell Cycle/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Survival/drug effects, Cultured, Cyclin-Dependent Kinase Inhibitor p21/biosynthesis/drug effects, Drug Synergism, Enzyme Activation/drug effects, G1 Phase/drug effects, Granulocytes/drug effects/physiology, HL-60 Cells, Humans, Intracellular Signaling Peptides and Proteins/drug effects/metabolism, Membrane Glycoproteins/metabolism/pharmacology, Mitochondrial Membranes/drug effects/physiology, Myeloid Cell Leukemia Sequence 1 Protein, Neoplasm Proteins/drug effects/metabolism, Phosphorylation, Proto-Oncogene Proteins c-bcl-2/drug effects/metabolism, Reactive Oxygen Species/metabolism, Resting Phase, Retinoblastoma Protein/drug effects/metabolism, TNF-Related Apoptosis-Inducing Ligand, Transforming Growth Factor beta/*pharmacology, Transforming Growth Factor beta1, Tretinoin/*antagonists & inhibitors/pharmacology, Tumor Cells, Tumor Necrosis Factor-alpha/metabolism/pharmacology
@article{soucek_transforming_2006,
title = {Transforming growth factor-beta1 inhibits all-trans retinoic acid-induced apoptosis.},
author = {Karel Soucek and Jirí Pacherník and Lukás Kubala and Jan Vondrácek and Jirina Hofmanová and Alois Kozubík},
doi = {10.1016/j.leukres.2005.09.007},
issn = {0145-2126},
year = {2006},
date = {2006-05-01},
journal = {Leukemia research},
volume = {30},
number = {5},
pages = {607–623},
abstract = {The interaction between retinoids and transforming growth factor-beta1 (TGF-beta1) leading to regulation of proliferation, differentiation and apoptosis is not still fully understood. In this study, we demonstrated that a combination treatment with all-trans retinoic acid (ATRA) and TGF-beta1 led to the enhancement of ATRA-induced suppression of cell proliferation, which is accompanied by inhibition of ATRA-induced apoptosis in human leukemia HL-60 cells. This effect was preceded by the arrest of cells in G0/G1 cell cycle phase linked with pRb protein dephosphorylation, continuous accumulation of p21 and transiently increased level of p27, inhibitors of cyclin-dependent kinases. Inhibition of ATRA-induced apoptosis by TGF-beta1 was associated with an increased level of Mcl-1 protein, an anti-apoptotic member of Bcl-2 family, but not with inhibition of mitochondrial membrane depolarization. Levels of other Bcl-2 family proteins (Bcl-2, Bcl-X(L), Bad, Bak, Bax) were unaffected by simultaneous ATRA and TGF-beta1 treatment, when compared to ATRA alone. Upregulation of c-FLIP(L) protein, an inhibitor of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), correspond with inhibition of ATRA-induced (autocrine TRAIL-mediated) caspase-8 activation and apoptosis. These results suggest that apoptosis inhibition associated with proliferation block could depend on modulation of the TRAIL apoptotic pathway and regulation of the Mcl-1 protein level. In summary, we demonstrate that the balance of processes leading to regulation of proliferation and differentiation of myeloid cells can modulate cell sensitivity to apoptosis-inducing stimuli.},
note = {Place: England},
keywords = {Apoptosis Regulatory Proteins/metabolism/pharmacology, Apoptosis/*drug effects/physiology, bcl-2-Associated X Protein/drug effects/metabolism, CASP8 and FADD-Like Apoptosis Regulating Protein, Caspase 3, Caspase 8, Caspases/drug effects/metabolism, CD11b Antigen/biosynthesis/drug effects, Cell Cycle/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Survival/drug effects, Cultured, Cyclin-Dependent Kinase Inhibitor p21/biosynthesis/drug effects, Drug Synergism, Enzyme Activation/drug effects, G1 Phase/drug effects, Granulocytes/drug effects/physiology, HL-60 Cells, Humans, Intracellular Signaling Peptides and Proteins/drug effects/metabolism, Membrane Glycoproteins/metabolism/pharmacology, Mitochondrial Membranes/drug effects/physiology, Myeloid Cell Leukemia Sequence 1 Protein, Neoplasm Proteins/drug effects/metabolism, Phosphorylation, Proto-Oncogene Proteins c-bcl-2/drug effects/metabolism, Reactive Oxygen Species/metabolism, Resting Phase, Retinoblastoma Protein/drug effects/metabolism, TNF-Related Apoptosis-Inducing Ligand, Transforming Growth Factor beta/*pharmacology, Transforming Growth Factor beta1, Tretinoin/*antagonists & inhibitors/pharmacology, Tumor Cells, Tumor Necrosis Factor-alpha/metabolism/pharmacology},
pubstate = {published},
tppubtype = {article}
}