2013
Fedr, Radek; Pernicová, Zuzana; Slabáková, Eva; Straková, Nicol; Bouchal, Jan; Grepl, Michal; Kozubík, Alois; Souček, Karel
Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells. Journal Article
In: Cytometry. Part A : the journal of the International Society for Analytical Cytology, vol. 83, no. 5, pp. 472–482, 2013, ISSN: 1552-4930 1552-4922, (Place: United States).
Abstract | Links | BibTeX | Tags: *Cell Proliferation, AC133 Antigen, Antigens, Biomarkers, CD/metabolism, Cell Adhesion Molecules/metabolism, Cell Line, Cell Survival, Colonic Neoplasms/metabolism/*pathology, Flow Cytometry/*methods, Glycoproteins/metabolism, Humans, Hyaluronan Receptors/metabolism, In Vitro Techniques, Integrin alpha6/metabolism, Male, Neoplasm/metabolism, Neoplastic Stem Cells/metabolism/*pathology, Peptides/metabolism, Prostatic Neoplasms/metabolism/*pathology, Tumor, Tumor Stem Cell Assay/*methods, Tumor/metabolism
@article{fedr_automatic_2013,
title = {Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells.},
author = {Radek Fedr and Zuzana Pernicová and Eva Slabáková and Nicol Straková and Jan Bouchal and Michal Grepl and Alois Kozubík and Karel Souček},
doi = {10.1002/cyto.a.22273},
issn = {1552-4930 1552-4922},
year = {2013},
date = {2013-05-01},
journal = {Cytometry. Part A : the journal of the International Society for Analytical Cytology},
volume = {83},
number = {5},
pages = {472–482},
abstract = {The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples.},
note = {Place: United States},
keywords = {*Cell Proliferation, AC133 Antigen, Antigens, Biomarkers, CD/metabolism, Cell Adhesion Molecules/metabolism, Cell Line, Cell Survival, Colonic Neoplasms/metabolism/*pathology, Flow Cytometry/*methods, Glycoproteins/metabolism, Humans, Hyaluronan Receptors/metabolism, In Vitro Techniques, Integrin alpha6/metabolism, Male, Neoplasm/metabolism, Neoplastic Stem Cells/metabolism/*pathology, Peptides/metabolism, Prostatic Neoplasms/metabolism/*pathology, Tumor, Tumor Stem Cell Assay/*methods, Tumor/metabolism},
pubstate = {published},
tppubtype = {article}
}
2009
Vistejnova, Lucie; Dvorakova, Jana; Hasova, Martina; Muthny, Tomas; Velebny, Vladimir; Soucek, Karel; Kubala, Lukas
The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques. Journal Article
In: Neuro endocrinology letters, vol. 30 Suppl 1, pp. 121–127, 2009, ISSN: 0172-780X, (Place: Sweden).
Abstract | BibTeX | Tags: *Cell Proliferation, *Electric Impedance, 3T3 Cells, Adenosine Triphosphate/*metabolism, Animals, Cell Count/*methods, Cell Line, Cells, Colorimetry, Cultured, Dermis/cytology, Fibroblasts/cytology, Humans, Keratinocytes/cytology, Luminescent Measurements, Mice, Mitochondria/enzymology/metabolism, Oxidation-Reduction, Tetrazolium Salts/*metabolism, Time Factors
@article{vistejnova_comparison_2009,
title = {The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques.},
author = {Lucie Vistejnova and Jana Dvorakova and Martina Hasova and Tomas Muthny and Vladimir Velebny and Karel Soucek and Lukas Kubala},
issn = {0172-780X},
year = {2009},
date = {2009-01-01},
journal = {Neuro endocrinology letters},
volume = {30 Suppl 1},
pages = {121–127},
abstract = {OBJECTIVES: Determination of cell numbers is a crucial step in studies focused on cytokinetics and cell toxicity. The impedance-based analysis employing electronic sensor array system xCELLigence System allowing label-free dynamic monitoring of relative viable adherent cell amounts was compared with the most utilized methods for relative quantification of viable cell numbers based on a determination of cellular metabolism. DESIGN: Colorimetric assay based on reduction of tetrazolium salt (MTT) by mitochondrial enzymes and chemiluminiscent assay based on intracellular adenosine triphosphate (ATP) determination were compared with the impedance-based system. Cell morphology was compared by microscopic evaluation. Normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF), together with 3T3 mouse fibroblast and HaCaT keratinocyte cell lines were employed. RESULTS: The progress of cell growth curves obtained by different methods during 72 hours reflected cell type and cell seeding densities. The impedance-based method was found to be applicable for the determination of the cell proliferation of 3T3 fibroblasts, HaCaT and NHDF, since the comparison of this method with ATP and MTT determinations showed a comparable results. In contrast, the proliferation of NHEK measured by the impedance-based method did not correlate with other methodological approaches. This could be accounted to the specific morphological appearance of these cells. CONCLUSION: The study shows the impedance-based detection of viable adherent cells is a valuable approach for cytokinetics and pharmacological studies. However, the specific morphological characteristics of cell lines have to be considered employing this method for determination of cell proliferation without using other reference methods.},
note = {Place: Sweden},
keywords = {*Cell Proliferation, *Electric Impedance, 3T3 Cells, Adenosine Triphosphate/*metabolism, Animals, Cell Count/*methods, Cell Line, Cells, Colorimetry, Cultured, Dermis/cytology, Fibroblasts/cytology, Humans, Keratinocytes/cytology, Luminescent Measurements, Mice, Mitochondria/enzymology/metabolism, Oxidation-Reduction, Tetrazolium Salts/*metabolism, Time Factors},
pubstate = {published},
tppubtype = {article}
}
2006
Phung, Anh D.; Soucek, Karel; Kubala, Lukás; Harper, Richart W.; Bulinski, J. Chloë; Eiserich, Jason P.
Posttranslational nitrotyrosination of alpha-tubulin induces cell cycle arrest and inhibits proliferation of vascular smooth muscle cells. Journal Article
In: European journal of cell biology, vol. 85, no. 12, pp. 1241–1252, 2006, ISSN: 0171-9335, (Place: Germany).
Abstract | Links | BibTeX | Tags: *Cell Proliferation, Animals, Apoptosis/physiology, Cell Cycle/*physiology, Cells, Cultured, Glutamic Acid/metabolism, Microtubules/physiology, Muscle, Post-Translational/*physiology, Protein Processing, Rats, Smooth, Tubulin/*metabolism, Tyrosine/*analogs & derivatives/metabolism, Vascular/*cytology/physiology
@article{phung_posttranslational_2006,
title = {Posttranslational nitrotyrosination of alpha-tubulin induces cell cycle arrest and inhibits proliferation of vascular smooth muscle cells.},
author = {Anh D. Phung and Karel Soucek and Lukás Kubala and Richart W. Harper and J. Chloë Bulinski and Jason P. Eiserich},
doi = {10.1016/j.ejcb.2006.05.016},
issn = {0171-9335},
year = {2006},
date = {2006-12-01},
journal = {European journal of cell biology},
volume = {85},
number = {12},
pages = {1241–1252},
abstract = {Hyperproliferation of vascular smooth muscle cells is a hallmark of atherosclerosis and related vascular complications. Microtubules are important for many aspects of mammalian cell responses including growth, migration and signaling. alpha-Tubulin, a component of the microtubule cytoskeleton, is unique amongst cellular proteins in that it undergoes a reversible posttranslational modification whereby the C-terminal tyrosine residue is removed (Glu-tubulin) and re-added (Tyr-tubulin). Whereas the reversible detyrosination/tyrosination cycle of alpha-tubulin has been implicated in regulating various aspects of cell biology, the precise function of this posttranslational modification has remained poorly characterized. Herein, we provide evidence suggesting that alpha-tubulin detyrosination is a required event in the proliferation of vascular smooth muscle cells. Proliferation of rat aortic smooth muscle cells in response to serum was temporally associated with the detyrosination of alpha-tubulin, but not acetylation of alpha-tubulin; Glu-tubulin reached maximal levels between 12 and 18h following cell cycle initiation. Inclusion of 3-nitro-l-tyrosine (NO(2)Tyr) in the culture medium resulted in the selective nitrotyrosination of alpha-tubulin, that was paralleled by decreased elaboration of Glu-tubulin, decreased expression of cyclins A and E, decreased association of the microtubule plus-end binding protein EB1, and inhibited cell proliferation. Nitrotyrosination of alpha-tubulin did not induce necrotic or apoptotic death of rat aortic smooth muscle cells, but instead led to cell cycle arrest at the G(1)/S boundary coincident with decreased DNA synthesis. Collectively, these results suggest that the C-terminus of alpha-tubulin and its detyrosination are functionally important as a molecular switch that regulates cell cycle progression in vascular smooth muscle cells.},
note = {Place: Germany},
keywords = {*Cell Proliferation, Animals, Apoptosis/physiology, Cell Cycle/*physiology, Cells, Cultured, Glutamic Acid/metabolism, Microtubules/physiology, Muscle, Post-Translational/*physiology, Protein Processing, Rats, Smooth, Tubulin/*metabolism, Tyrosine/*analogs & derivatives/metabolism, Vascular/*cytology/physiology},
pubstate = {published},
tppubtype = {article}
}