2011
Gábelová, Alena; Valovičová, Zuzana; Mesárošová, Monika; Trilecová, Lenka; Hrubá, Eva; Marvanová, Soňa; Krčmár, Pavel; Milcová, Alena; Schmuczerová, Jana; Vondráček, Jan; Machala, Miroslav; Topinka, Jan
Genotoxicity of 7H-dibenzo[c,g]carbazole and its tissue-specific derivatives in human hepatoma HepG2 cells is related to CYP1A1/1A2 expression. Journal Article
In: Environmental and molecular mutagenesis, vol. 52, no. 8, pp. 636–645, 2011, ISSN: 1098-2280 0893-6692, (Place: United States).
Abstract | Links | BibTeX | Tags: Base Sequence, Blotting, Carbazoles/*toxicity, Cell Survival/drug effects, Chromosome-Defective/chemically induced/statistics & numerical data, Comet assay, Cytochrome P-450 CYP1A1/*genetics, Cytochrome P-450 CYP1A2/*genetics, DNA adducts, DNA Breaks, Dose-Response Relationship, Drug, Hep G2 Cells, Histones/metabolism, Humans, Micronuclei, Micronucleus Tests, Mitotic Index, Molecular Sequence Data, Mutagens/*toxicity, Phosphorylation, Real-Time Polymerase Chain Reaction, Tumor Suppressor Protein p53/metabolism, Western
@article{gabelova_genotoxicity_2011,
title = {Genotoxicity of 7H-dibenzo[c,g]carbazole and its tissue-specific derivatives in human hepatoma HepG2 cells is related to CYP1A1/1A2 expression.},
author = {Alena Gábelová and Zuzana Valovičová and Monika Mesárošová and Lenka Trilecová and Eva Hrubá and Soňa Marvanová and Pavel Krčmár and Alena Milcová and Jana Schmuczerová and Jan Vondráček and Miroslav Machala and Jan Topinka},
doi = {10.1002/em.20664},
issn = {1098-2280 0893-6692},
year = {2011},
date = {2011-10-01},
journal = {Environmental and molecular mutagenesis},
volume = {52},
number = {8},
pages = {636–645},
abstract = {The goal of this study was to investigate the genotoxicity of 7H-dibenzo[c,g]carbazole (DBC), a ubiquitous environmental pollutant, and its methyl derivatives, 5,9-dimethylDBC (DiMeDBC), a strict hepatocarcinogen, and N-methylDBC (N-MeDBC), a specific sarcomagen in human hepatoma HepG2 cells, and to infer potential mechanisms underlying the biological activity of particular carcinogen. All dibenzocarbazoles, regardless the tissue specificity, induced significant DNA strand break levels and micronuclei in HepG2 cells; though a mitotic spindle dysfunction rather than a chromosome breakage was implicated in N-MeDBC-mediated micronucleus formation. While DBC and N-MeDBC produced stable DNA adducts followed with p53 protein phosphorylation at Ser-15, DiMeDBC failed. A significant increase in DNA strand breaks following incubation of exposed cells with a repair-specific endonuclease (Fpg protein) suggested that either oxidative DNA damage or unstable DNA-adducts might underlie DiMeDBC genotoxicity in human hepatoma cells. DiMeDBC and N-MeDBC increased substantially also the amount of CYP1A1/2 expression in HepG2 cells. Pretreatment of cells with substances affecting AhR-mediated CYP1A family of enzymes expression; however, diminished DiMeDBC and N-MeDBC genotoxicity. Our data clearly demonstrated differences in the mechanisms involved in the biological activity of DiMeDBC and N-MeDBC in human hepatoma cells; the genotoxicity of these DBC derivatives is closely related to CYP1A1/2 expression.},
note = {Place: United States},
keywords = {Base Sequence, Blotting, Carbazoles/*toxicity, Cell Survival/drug effects, Chromosome-Defective/chemically induced/statistics & numerical data, Comet assay, Cytochrome P-450 CYP1A1/*genetics, Cytochrome P-450 CYP1A2/*genetics, DNA adducts, DNA Breaks, Dose-Response Relationship, Drug, Hep G2 Cells, Histones/metabolism, Humans, Micronuclei, Micronucleus Tests, Mitotic Index, Molecular Sequence Data, Mutagens/*toxicity, Phosphorylation, Real-Time Polymerase Chain Reaction, Tumor Suppressor Protein p53/metabolism, Western},
pubstate = {published},
tppubtype = {article}
}
2009
Valovicová, Zuzana; Marvanová, Sona; Mészárosová, Monika; Srancíková, Annamária; Trilecová, Lenka; Milcová, Alena; Líbalová, Helena; Vondrácek, Jan; Machala, Miroslav; Topinka, Jan; Gábelová, Alena
In: Mutation research, vol. 665, no. 1-2, pp. 51–60, 2009, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *DNA Damage, *DNA Repair, Animals, Biological, Carbazoles/*toxicity, Carcinogens/*toxicity, Cell Line, DNA Adducts/metabolism, Experimental/chemically induced, Histones/metabolism, Kinetics, Liver Neoplasms, Liver/cytology/*drug effects/*metabolism, Models, Mutagens/toxicity, Oxidative Stress/drug effects, Rats, Sarcoma, Stem Cells/cytology/*drug effects/*metabolism
@article{valovicova_differences_2009,
title = {Differences in DNA damage and repair produced by systemic, hepatocarcinogenic and sarcomagenic dibenzocarbazole derivatives in a model of rat liver progenitor cells.},
author = {Zuzana Valovicová and Sona Marvanová and Monika Mészárosová and Annamária Srancíková and Lenka Trilecová and Alena Milcová and Helena Líbalová and Jan Vondrácek and Miroslav Machala and Jan Topinka and Alena Gábelová},
doi = {10.1016/j.mrfmmm.2009.02.014},
issn = {0027-5107},
year = {2009},
date = {2009-06-01},
journal = {Mutation research},
volume = {665},
number = {1-2},
pages = {51–60},
abstract = {Liver progenitor (oval) cells are a potential target cell population for hepatocarcinogens. Our recent study showed that the liver carcinogens 7H-dibenzo[c,g]carbazole (DBC) and 5,9-dimethyldibenzo[c,g]carbazole (DiMeDBC), but not the sarcomagen N-methyldibenzo[c,g]carbazole (N-MeDBC), induced several cellular events associated with tumor promotion in WB-F344 cells, an in vitro model of liver oval cells [J. Vondracek, L. Svihalkova-Sindlerova, K. Pencikova, P. Krcmar, Z. Andrysik, K. Chramostova, S. Marvanova, Z. Valovicova, A. Kozubik, A. Gabelova, M. Machala, 7H-Dibenzo[c,g]carbazole and 5,9-dimethyldibenzo[c,g]carbazole exert multiple toxic events contributing to tumor promotion in rat liver epithelial 'stem-like' cells, Mutat. Res. Fundam. Mol. Mech. Mutagen. 596 (2006) 43-56]. In this study, we focused on the genotoxic effects generated by these dibenzocarbazoles in WB-F344 cells to better understand the cellular and molecular mechanisms involved in hepatocarcinogenesis. Lower IC(50) values determined for DBC and DiMeDBC, as compared with N-MeDBC, indicated a higher sensitivity of WB-F344 cells towards hepatocarcinogens. Accordingly, DBC produced a dose-dependent DNA-adduct formation resulting in substantial inhibition of DNA replication and transcription. In contrast, DNA-adduct number detected in DiMeDBC-exposed cells was almost negligible, whereas N-MeDBC produced a low level of DNA adducts. Although all dibenzocarbazoles significantly increased the level of strand breaks (p<0.05) and micronuclei (p<0.001) after 2-h treatment, differences in the kinetics of strand break rejoining were found. The strand break level in DiMeDBC- and N-MeDBC-exposed cells returned to near the background level within 24h after treatment, whereas a relatively high DNA damage level was detected in DBC-treated cells up to 48h after exposure. Additional breaks detected after incubation of DiMeDBC-exposed WB-F344 cells with a repair-specific endonuclease, along with a nearly 3-fold higher level of reactive oxygen species found in these cells as compared with control, suggest a possible role of oxidative stress in DiMeDBC genotoxicity. We demonstrated qualitative differences in the DNA damage profiles produced by hepatocarcinogens DBC and DiMeDBC in WB-F344 cells. Different lesions may trigger distinct cellular pathways involved in hepatocarcinogenesis. The low amount of DNA damage, together with an efficient repair, may explain the lack of hepatocarcinogenicity of N-MeDBC.},
note = {Place: Netherlands},
keywords = {*DNA Damage, *DNA Repair, Animals, Biological, Carbazoles/*toxicity, Carcinogens/*toxicity, Cell Line, DNA Adducts/metabolism, Experimental/chemically induced, Histones/metabolism, Kinetics, Liver Neoplasms, Liver/cytology/*drug effects/*metabolism, Models, Mutagens/toxicity, Oxidative Stress/drug effects, Rats, Sarcoma, Stem Cells/cytology/*drug effects/*metabolism},
pubstate = {published},
tppubtype = {article}
}
2006
Vondrácek, Jan; Svihálková-Sindlerová, Lenka; Pencíková, Katerina; Krcmár, Pavel; Andrysík, Zdenek; Chramostová, Katerina; Marvanová, Sona; Valovicová, Zuzana; Kozubík, Alois; Gábelová, Alena; Machala, Miroslav
In: Mutation research, vol. 596, no. 1-2, pp. 43–56, 2006, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon Hydroxylases/genetics, Base Sequence, Carbazoles/*toxicity, Carcinogens/*toxicity, Cell Death/drug effects, Cytochrome P-450 CYP1A1/genetics, Cytochrome P-450 CYP1A2/genetics, Cytochrome P-450 CYP1B1, DNA Primers, Epithelial Cells/drug effects/*pathology, Inbred F344, Liver/*cytology/drug effects, Methylation, Molecular Structure, Mutagens, Rats, Reverse Transcriptase Polymerase Chain Reaction
@article{vondracek_7h-dibenzocgcarbazole_2006,
title = {7H-Dibenzo[c,g]carbazole and 5,9-dimethyldibenzo[c,g]carbazole exert multiple toxic events contributing to tumor promotion in rat liver epithelial 'stem-like' cells.},
author = {Jan Vondrácek and Lenka Svihálková-Sindlerová and Katerina Pencíková and Pavel Krcmár and Zdenek Andrysík and Katerina Chramostová and Sona Marvanová and Zuzana Valovicová and Alois Kozubík and Alena Gábelová and Miroslav Machala},
doi = {10.1016/j.mrfmmm.2005.11.005},
issn = {0027-5107},
year = {2006},
date = {2006-04-01},
journal = {Mutation research},
volume = {596},
number = {1-2},
pages = {43–56},
abstract = {Immature liver progenitor cells have been suggested to be an important target of hepatotoxins and hepatocarcinogens. The goal of the present study was to assess the impact of 7H-dibenzo[c,g]carbazole (DBC) and its tissue-specific carcinogenic N-methyl (N-MeDBC) and 5,9-dimethyl (DiMeDBC) derivatives on rat liver epithelial WB-F344 cells, in vitro model of liver progenitor cells. We investigated the cellular events associated with both tumor initiation and promotion, such as activation of aryl hydrocarbon receptor (AhR), changes in expression of enzymes involved in metabolic activation of DBC and its derivatives, effects on cell cycle, cell proliferation/apoptosis and inhibition of gap junctional intercellular communication (GJIC). N-MeDBC, a tissue-specific sarcomagen, was only a weak inhibitor of GJIC or inducer of AhR-mediated activity, and it did not affect either cell proliferation or apoptosis. DBC was efficient GJIC inhibitor, while DiMeDBC manifested the strongest AhR inducing activity. Accordingly, DiMeDBC was also the most potent inducer of cytochrome P450 1A1 (CYP1A1) and CYP1A2 expression among the three compounds tested. Both DBC and DiMeDBC induced expression of CYP1B1 and aldo-keto reductase 1C9 (AKR1C9). N-MeDBC failed to significantly upregulate CYP1A1/2 and it only moderately increased CYP1B1 or AKR1C9. Only the potent liver carcinogens, DBC and DiMeDBC, caused a significant increase of p53 phosphorylation at Ser15, an increased accumulation of cells in S-phase and apoptosis at micromolar concentrations. In addition, DiMeDBC was found to stimulate cell proliferation of contact-inhibited WB-F344 cells at 1 microM concentration, which is a mode of action that might further contribute to its hepatocarcinogenicity. The present data seem to suggest that the AhR activation, induction of enzymes involved in metabolic activation, inhibition of GJIC or stimulation of cell proliferation might all contribute to the hepatocarcinogenic effects of DBC and DiMeDBC.},
note = {Place: Netherlands},
keywords = {Animals, Aryl Hydrocarbon Hydroxylases/genetics, Base Sequence, Carbazoles/*toxicity, Carcinogens/*toxicity, Cell Death/drug effects, Cytochrome P-450 CYP1A1/genetics, Cytochrome P-450 CYP1A2/genetics, Cytochrome P-450 CYP1B1, DNA Primers, Epithelial Cells/drug effects/*pathology, Inbred F344, Liver/*cytology/drug effects, Methylation, Molecular Structure, Mutagens, Rats, Reverse Transcriptase Polymerase Chain Reaction},
pubstate = {published},
tppubtype = {article}
}