2011
Umannová, Lenka; Machala, Miroslav; Topinka, Jan; Schmuczerová, Jana; Krčmář, Pavel; Neča, Jiří; Šujanová, Klára; Kozubík, Alois; Vondráček, Jan
In: Toxicology letters, vol. 206, no. 2, pp. 121–129, 2011, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Alveolar Epithelial Cells/*drug effects/immunology/*metabolism, Animals, Apoptosis/drug effects, Aryl Hydrocarbon Hydroxylases/genetics/metabolism, Benzo(a)pyrene/metabolism/*toxicity, Carcinogens, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, DNA Adducts/*metabolism, Environmental/toxicity, Enzyme Activation/drug effects, Gene Expression Regulation/drug effects, Inflammation Mediators/*metabolism, Messenger/metabolism, Mutagens/*toxicity, p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism, Phosphorylation/drug effects, Post-Translational/drug effects, Protein Kinase Inhibitors/pharmacology, Protein Processing, Rats, RNA, Tumor Necrosis Factor-alpha/*metabolism, Tumor Suppressor Protein p53/metabolism
@article{umannova_benzopyrene_2011,
title = {Benzo[a]pyrene and tumor necrosis factor-α coordinately increase genotoxic damage and the production of proinflammatory mediators in alveolar epithelial type II cells.},
author = {Lenka Umannová and Miroslav Machala and Jan Topinka and Jana Schmuczerová and Pavel Krčmář and Jiří Neča and Klára Šujanová and Alois Kozubík and Jan Vondráček},
doi = {10.1016/j.toxlet.2011.06.029},
issn = {1879-3169 0378-4274},
year = {2011},
date = {2011-10-01},
journal = {Toxicology letters},
volume = {206},
number = {2},
pages = {121–129},
abstract = {Alveolar type II epithelial (AEII) cells regulate lung inflammatory response and, simultaneously, they are a target of environmental carcinogenic factors. We employed an in vitro model of rat AEII cells, the RLE-6TN cell line, in order to analyze the interactive effects of tumor necrosis factor-α (TNF-α), a cytokine which plays a key role in the initiation of inflammatory responses in the lung, and benzo[a]pyrene (BaP), a highly carcinogenic polycyclic aromatic hydrocarbon. TNF-α strongly augmented the formation of stable BaP diol epoxide-DNA adducts in AEII cells, which was associated with enhanced p53-Ser15 phosphorylation and decreased cell survival. The increased genotoxicity of BaP was associated with altered expression of cytochrome P450 (CYP) enzymes involved in its bioactivation, a simultaneous suppression of CYP1A1 and enhancement of CYP1B1 expression. Importantly, BaP and TNF-α acted synergistically to upregulate key inflammatory regulators in AEII cells, including the expression of inducible NO synthase and cyclooxygenase-2 (COX-2), and enhanced prostaglandin E2 production and expression of proinflammatory cytokines, such as TNF-α, interleukin-1β and interleukin-6. We observed that BaP and TNF-α together strongly activated p38 kinase, a principal regulator of inflammatory response. SB202190, a specific p38 inhibitor, prevented induction of both COX-2 and proinflammatory cytokines, thus confirming that p38 activity was crucial for the observed inflammatory reaction. Taken together, our data demonstrated, for the first time, that a proinflammatory cytokine and an environmental PAH may interact to potentiate both DNA damage and the inflammatory response in AEII cells, which may occur through coordinated upregulation of p38 activity.},
note = {Place: Netherlands},
keywords = {Alveolar Epithelial Cells/*drug effects/immunology/*metabolism, Animals, Apoptosis/drug effects, Aryl Hydrocarbon Hydroxylases/genetics/metabolism, Benzo(a)pyrene/metabolism/*toxicity, Carcinogens, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, DNA Adducts/*metabolism, Environmental/toxicity, Enzyme Activation/drug effects, Gene Expression Regulation/drug effects, Inflammation Mediators/*metabolism, Messenger/metabolism, Mutagens/*toxicity, p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism, Phosphorylation/drug effects, Post-Translational/drug effects, Protein Kinase Inhibitors/pharmacology, Protein Processing, Rats, RNA, Tumor Necrosis Factor-alpha/*metabolism, Tumor Suppressor Protein p53/metabolism},
pubstate = {published},
tppubtype = {article}
}
2008
Topinka, Jan; Marvanová, Sona; Vondrácek, Jan; Sevastyanova, Oksana; Nováková, Zuzana; Krcmár, Pavel; Pencíková, Katerina; Machala, Miroslav
In: Mutation research, vol. 638, no. 1-2, pp. 122–132, 2008, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Apoptosis, Animals, Aryl Hydrocarbon Hydroxylases/genetics, Cells, Cultured, Cytochrome P-450 CYP1A1/genetics, Cytochrome P-450 CYP1B1, DNA Adducts/*metabolism, Inbred F344, Liver/*cytology, Messenger/analysis, Polycyclic Aromatic Hydrocarbons/*pharmacology, Rats, RNA, Stem Cells/*metabolism
@article{topinka_dna_2008,
title = {DNA adducts formation and induction of apoptosis in rat liver epithelial 'stem-like' cells exposed to carcinogenic polycyclic aromatic hydrocarbons.},
author = {Jan Topinka and Sona Marvanová and Jan Vondrácek and Oksana Sevastyanova and Zuzana Nováková and Pavel Krcmár and Katerina Pencíková and Miroslav Machala},
doi = {10.1016/j.mrfmmm.2007.09.004},
issn = {0027-5107},
year = {2008},
date = {2008-02-01},
journal = {Mutation research},
volume = {638},
number = {1-2},
pages = {122–132},
abstract = {The bipotent liver progenitor cells, so called oval cells, may participate at the early stages of hepatocarcinogenesis induced by chemical carcinogens. Unlike in mature parenchymal cells, little is known about formation of DNA adducts and other genotoxic events in oval cells. In the present study, we employed spontaneously immortalized rat liver WB-F344 cell line, which is an established in vitro model of oval cells, in order to study genotoxic effects of selected carcinogenic polycyclic aromatic hydrocarbons (PAHs). With exception of dibenzo[a,l]pyrene, and partly also benzo[g]chrysene and benz[a]anthracene, all other PAHs under the study induced high levels of CYP1A1 and CYP1B1 mRNA. In contrast, we observed distinct genotoxic and cytotoxic potencies of PAHs. Dibenzo[a,l]pyrene, and to a lesser extent also benzo[a]pyrene, benzo[g]chrysene and dibenzo[a,e]pyrene, formed high levels of DNA adducts. This was accompanied with accumulation of Ser-15 phosphorylated form of p53 protein and induction of apoptosis. Contrary to that, benz[a]anthracene, chrysene, benzo[b]fluoranthene and dibenzo[a,h]anthracene induced only low amounts of DNA adducts formation and minimal apoptosis, without exerting significant effects on p53 phosphorylation. Finally, we studied effects of 2,4,3',5'-tetramethoxystilbene and fluoranthene, inhibitors of CYP1B1 activity, which plays a central role in metabolic activation of dibenzo[a,l]pyrene. In a dose-dependent manner, both compounds inhibited apoptosis induced by dibenzo[a,l]pyrene, suggesting that it interferes with the metabolic activation of the latter one. The present data show that in model cell line sharing phenotypic properties with oval cells, PAHs can be efficiently metabolized to form ultimate genotoxic metabolites. Liver progenitor cells could be thus susceptible to this type of genotoxic insult, which makes WB-F344 cell line a useful tool for studies of genotoxic effects of organic contaminants in liver cells. Our results also suggest that, unlike in mature hepatocytes, CYP1B1 might be a primary enzyme responsible for formation of DNA adducts in liver progenitor cells.},
note = {Place: Netherlands},
keywords = {*Apoptosis, Animals, Aryl Hydrocarbon Hydroxylases/genetics, Cells, Cultured, Cytochrome P-450 CYP1A1/genetics, Cytochrome P-450 CYP1B1, DNA Adducts/*metabolism, Inbred F344, Liver/*cytology, Messenger/analysis, Polycyclic Aromatic Hydrocarbons/*pharmacology, Rats, RNA, Stem Cells/*metabolism},
pubstate = {published},
tppubtype = {article}
}