2011
Trilecová, Lenka; Krčková, Simona; Marvanová, Soňa; Pĕnčíková, Kateřina; Krčmář, Pavel; Neča, Jiří; Hulinková, Petra; Pálková, Lenka; Ciganek, Miroslav; Milcová, Alena; Topinka, Jan; Vondráček, Jan; Machala, Miroslav
Toxic effects of methylated benzo[a]pyrenes in rat liver stem-like cells. Journal Article
In: Chemical research in toxicology, vol. 24, no. 6, pp. 866–876, 2011, ISSN: 1520-5010 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/*chemistry/*toxicity, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1, DNA Adducts/metabolism, Epithelial Cells/drug effects/metabolism, Gene Expression Regulation/drug effects, Liver/*cytology, Methylation, Mutagens/*chemistry/*toxicity, Oxidative Stress/drug effects, Protein Kinases/metabolism, Rats, Receptors, Stem Cells/drug effects/metabolism, Tumor, Tumor Suppressor Protein p53/metabolism
@article{trilecova_toxic_2011,
title = {Toxic effects of methylated benzo[a]pyrenes in rat liver stem-like cells.},
author = {Lenka Trilecová and Simona Krčková and Soňa Marvanová and Kateřina Pĕnčíková and Pavel Krčmář and Jiří Neča and Petra Hulinková and Lenka Pálková and Miroslav Ciganek and Alena Milcová and Jan Topinka and Jan Vondráček and Miroslav Machala},
doi = {10.1021/tx200049x},
issn = {1520-5010 0893-228X},
year = {2011},
date = {2011-06-01},
journal = {Chemical research in toxicology},
volume = {24},
number = {6},
pages = {866–876},
abstract = {The methylated benzo[a]pyrenes (MeBaPs) are present at significant levels in the environment, especially in the sediments contaminated by petrogenic PAHs. However, the existing data on their toxic effects in vitro and/or in vivo are still largely incomplete. Transcription factor AhR plays a key role in the metabolic activation of PAHs to genotoxic metabolites, but the AhR activation may also contribute to the tumor promoting effects of PAHs. In this study, the AhR-mediated activity of five selected MeBaP isomers was estimated in the DR-CALUX reporter gene assay performed in rat hepatoma cells. Detection of other effects, including induction of CYP1A1, CYP1B1, and AKR1C9 mRNAs, DNA adduct formation, production of reactive oxygen species, oxidation of deoxyguanosine, and cell cycle modulation and apoptosis, was performed in the rat liver epithelial WB-F344 cell line, a model of liver progenitor cells. We identified 1-MeBaP as the most potent inducer of AhR activation, stable DNA adduct formation, checkpoint kinase 1 and p53 phosphorylation, and apoptosis. These effects suggest that 1-MeBaP is a potent genotoxin eliciting a typical sequence of events ascribed to carcinogenic PAHs: induction of CYP1 enzymes, formation of high levels of DNA adducts, activation of DNA damage responses (including p53 phosphorylation), and cell death. In contrast, 10-MeBaP, representing BaP isomers substituted with the methyl group in the angular ring, elicited only low levels DNA adduct formation and apoptosis. Other MeBaPs under study also elicited strong apoptotic responses associated with DNA adduct formation as the prevalent mode of toxic action of these compounds in liver cells. MeBaPs induced a weak production of ROS, which did not lead to significant oxidative DNA damage. Importantly, 1-MeBaP and 3-MeBaP were found to be potent AhR agonists, one order of magnitude more potent than BaP, thus suggesting that the AhR-dependent modulations of gene expression, deregulation of cell survival mechanisms, and further nongenotoxic effects associated with AhR activation may further contribute to their tumor promotion and carcinogenicity.},
note = {Place: United States},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/*chemistry/*toxicity, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1, DNA Adducts/metabolism, Epithelial Cells/drug effects/metabolism, Gene Expression Regulation/drug effects, Liver/*cytology, Methylation, Mutagens/*chemistry/*toxicity, Oxidative Stress/drug effects, Protein Kinases/metabolism, Rats, Receptors, Stem Cells/drug effects/metabolism, Tumor, Tumor Suppressor Protein p53/metabolism},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jiřina; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Toxicology, vol. 279, no. 1-3, pp. 146–154, 2011, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*drug effects/metabolism, Carcinoma, Cell Cycle/drug effects, Cell Nucleus/metabolism, Cell Proliferation/drug effects, Cells, Chromatin Immunoprecipitation, Cultured, Dose-Response Relationship, Drug, Gene Expression Regulation/*drug effects, Hepatocellular/pathology, Indoles/administration & dosage/metabolism/pharmacology, Liver Neoplasms/pathology, Liver/cytology/drug effects/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Protein Transport, Rats, Receptors, Signal Transduction/drug effects, Stem Cells/drug effects/metabolism
@article{prochazkova_differential_2011,
title = {Differential effects of indirubin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on the aryl hydrocarbon receptor (AhR) signalling in liver progenitor cells.},
author = {Jiřina Procházková and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.tox.2010.10.003},
issn = {1879-3185 0300-483X},
year = {2011},
date = {2011-01-01},
journal = {Toxicology},
volume = {279},
number = {1-3},
pages = {146–154},
abstract = {In the present study, we investigated the effects of potential endogenous ligand indirubin on the aryl hydrocarbon receptor (AhR) signalling, with a focus on the AhR-dependent gene expression and cell cycle progression in rat liver progenitor cells, and compared them with the effects of a model toxic AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The low (picomolar and nanomolar) doses of indirubin, corresponding to expected endogenous levels, induced a transient translocation of AhR to the nucleus, while high (micromolar) doses induced a long-term AhR nuclear translocation, followed by its degradation, similar to the effects of TCDD. Whereas high doses of indirubin recruited AhR/ARNT1 dimer to rat Cyp1a1 promoter, the low doses did not induce its DNA binding, as revealed by the chromatin immunoprecipitation assay. This corresponded with the fact that the micromolar doses of indirubin significantly increased Cyp1a1/1b1 mRNA in a way similar to TCDD, while the low doses of indirubin were only poor inducers of Cyp1a1/1b1 expression. Comparable patterns of expression were observed also for other AhR gene targets, such as Nqo1 and Nrf2. Also, only micromolar doses of indirubin were able to mimic the effects of TCDD on cell cycle and proliferation of liver progenitor cells or hepatoma cells. Nevertheless, indirubin at low concentrations may have unique effects on gene expression in non-tumorigenic cells. Although both TCDD and the high doses of indirubin repressed plakoglobin (Jup) expression, the picomolar doses of indirubin, unlike the equimolar doses of TCDD, increased mRNA levels of this important desmosomal and adherens junctions constituent. These present data suggest that the outcome of AhR activation induced by indirubin at concentrations expected in vivo may differ from the AhR signalling triggered by exogenous toxic ligands, such as TCDD.},
note = {Place: Ireland},
keywords = {Animals, Aryl Hydrocarbon/*drug effects/metabolism, Carcinoma, Cell Cycle/drug effects, Cell Nucleus/metabolism, Cell Proliferation/drug effects, Cells, Chromatin Immunoprecipitation, Cultured, Dose-Response Relationship, Drug, Gene Expression Regulation/*drug effects, Hepatocellular/pathology, Indoles/administration & dosage/metabolism/pharmacology, Liver Neoplasms/pathology, Liver/cytology/drug effects/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Protein Transport, Rats, Receptors, Signal Transduction/drug effects, Stem Cells/drug effects/metabolism},
pubstate = {published},
tppubtype = {article}
}