2011
Benes, Petr; Knopfova, Lucia; Trcka, Filip; Nemajerova, Alice; Pinheiro, Diana; Soucek, Karel; Fojta, Miroslav; Smarda, Jan
Inhibition of topoisomerase IIα: novel function of wedelolactone. Journal Article
In: Cancer letters, vol. 303, no. 1, pp. 29–38, 2011, ISSN: 1872-7980 0304-3835, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Antigens, Antineoplastic Agents/pharmacology, Apoptosis/drug effects, Breast Neoplasms/*drug therapy/enzymology/pathology, Cell Cycle/drug effects, Cell Growth Processes/drug effects, Cell Line, Cell Survival/drug effects, Coumarins/*pharmacology, DNA Damage, DNA Topoisomerases, DNA-Binding Proteins/*antagonists & inhibitors/metabolism, Enzyme-Linked Immunosorbent Assay, Female, Humans, Immunoblotting, Neoplasm/metabolism, Signal Transduction, Topoisomerase Inhibitors/*pharmacology, Tumor, Type II/metabolism
@article{benes_inhibition_2011,
title = {Inhibition of topoisomerase IIα: novel function of wedelolactone.},
author = {Petr Benes and Lucia Knopfova and Filip Trcka and Alice Nemajerova and Diana Pinheiro and Karel Soucek and Miroslav Fojta and Jan Smarda},
doi = {10.1016/j.canlet.2011.01.002},
issn = {1872-7980 0304-3835},
year = {2011},
date = {2011-04-01},
journal = {Cancer letters},
volume = {303},
number = {1},
pages = {29–38},
abstract = {The naturally occurring coumestan wedelolactone has been previously shown to reduce growth of various cancer cells. So far, the growth-suppressing effect of wedelolactone has been attributed to the inhibition of the NFκB transcription factor and/or androgen receptors. We found that wedelolactone suppressed growth and induced apoptosis of androgen receptor-negative MDA-MB-231 breast cancer cells at concentrations that did not inhibit the NFκB activity. The cells responded to wedelolactone by the S and G2/M phase cell cycle arrest and induction of the DNA damage signaling. Wedelolactone interacted with dsDNA and inhibited the activity of DNA topoisomerase IIα. We conclude that wedelolactone can act as growth suppressor independently of NFκB and androgen receptors.},
note = {Place: Ireland},
keywords = {Antigens, Antineoplastic Agents/pharmacology, Apoptosis/drug effects, Breast Neoplasms/*drug therapy/enzymology/pathology, Cell Cycle/drug effects, Cell Growth Processes/drug effects, Cell Line, Cell Survival/drug effects, Coumarins/*pharmacology, DNA Damage, DNA Topoisomerases, DNA-Binding Proteins/*antagonists & inhibitors/metabolism, Enzyme-Linked Immunosorbent Assay, Female, Humans, Immunoblotting, Neoplasm/metabolism, Signal Transduction, Topoisomerase Inhibitors/*pharmacology, Tumor, Type II/metabolism},
pubstate = {published},
tppubtype = {article}
}
2006
Horváth, Viktor; Blanárová, Olga; Svihálková-Sindlerová, Lenka; Soucek, Karel; Hofmanová, Jirina; Sova, Petr; Kroutil, Ales; Fedorocko, Peter; Kozubík, Alois
Platinum(IV) complex with adamantylamine overcomes intrinsic resistance to cisplatin in ovarian cancer cells. Journal Article
In: Gynecologic oncology, vol. 102, no. 1, pp. 32–40, 2006, ISSN: 0090-8258, (Place: United States).
Abstract | Links | BibTeX | Tags: Adenocarcinoma/*drug therapy/metabolism/pathology, Amantadine/administration & dosage/analogs & derivatives, Antineoplastic Combined Chemotherapy Protocols/*pharmacology, Blotting, Cell Cycle/drug effects, Cell Growth Processes/drug effects, Cell Line, Cisplatin/administration & dosage, DNA, Drug resistance, Female, Humans, Neoplasm, Neoplasm Proteins/biosynthesis, Neoplasm/biosynthesis, Organoplatinum Compounds/administration & dosage/*pharmacology, Ovarian Neoplasms/*drug therapy/metabolism/pathology, Poly(ADP-ribose) Polymerases/metabolism, Tumor, Vault Ribonucleoprotein Particles/biosynthesis, Western
@article{horvath_platinumiv_2006,
title = {Platinum(IV) complex with adamantylamine overcomes intrinsic resistance to cisplatin in ovarian cancer cells.},
author = {Viktor Horváth and Olga Blanárová and Lenka Svihálková-Sindlerová and Karel Soucek and Jirina Hofmanová and Petr Sova and Ales Kroutil and Peter Fedorocko and Alois Kozubík},
doi = {10.1016/j.ygyno.2005.11.016},
issn = {0090-8258},
year = {2006},
date = {2006-07-01},
journal = {Gynecologic oncology},
volume = {102},
number = {1},
pages = {32–40},
abstract = {OBJECTIVES: The resistance of tumor cells to cisplatin remains a major cause of treatment failure in cancer patients. In this study, the ability of Pt(IV) complex with adamantylamine-LA-12 and its reduced counterpart with lower oxidation state Pt(II)-LA-9 to overcome intrinsic cisplatin resistance was investigated. METHODS: The ovarian adenocarcinoma SK-OV-3 cells were exposed to cisplatin, LA-9, or LA-12 for 72 h and the effects of drug concentrations that caused 10% or 50% inhibition of cell proliferation were determined. After 24-72 h of sustained exposure viability, apoptosis and inhibition of proliferation were analyzed. DNA synthesis and cell cycle analysis were performed simultaneously in order to determine the modulation of cell cycle after platinum complexes treatment. RESULTS: Lung Resistance-related Protein (LRP/MVP) was detected in SK-OV-3 cells but not in the other two ovarian cancer lines with different sensitivity to cisplatin. LRP/MVP overexpression may be an important factor contributing to intrinsic cisplatin resistance. Interestingly, Pt(IV) complex-LA-12 had approximately 2.7-fold lower IC(50) concentration than LA-9 or cisplatin in SK-OV-3 cells. Moreover, LA-12 caused persistent accumulation of cells in S-phase of the cell cycle while LA-9 and cisplatin treatment-induced S-phase arrest was transient and shifted to G(2)/M-phase at later intervals. Apoptosis seemed to be not the dominant type of cell death caused by such the derivatives, but it was the most intensive after LA-12 treatment. CONCLUSIONS: We found strong differences between effects of Pt(IV) complex-LA-12 and Pt(II) derivatives-LA-9 and cisplatin on cytokinetic parameters. Overall, LA-12 but not its reduced Pt(II) counterpart LA-9 is the compound effective in p53 null human ovarian cancer cells and it is able to overcome intrinsic cisplatin resistance in these cells.},
note = {Place: United States},
keywords = {Adenocarcinoma/*drug therapy/metabolism/pathology, Amantadine/administration & dosage/analogs & derivatives, Antineoplastic Combined Chemotherapy Protocols/*pharmacology, Blotting, Cell Cycle/drug effects, Cell Growth Processes/drug effects, Cell Line, Cisplatin/administration & dosage, DNA, Drug resistance, Female, Humans, Neoplasm, Neoplasm Proteins/biosynthesis, Neoplasm/biosynthesis, Organoplatinum Compounds/administration & dosage/*pharmacology, Ovarian Neoplasms/*drug therapy/metabolism/pathology, Poly(ADP-ribose) Polymerases/metabolism, Tumor, Vault Ribonucleoprotein Particles/biosynthesis, Western},
pubstate = {published},
tppubtype = {article}
}