2024
Valcikova, Barbora; Vadovicova, Natalia; Smolkova, Karolina; Zacpalova, Magdalena; Krejci, Pavel; Lee, Shannon; Rauch, Jens; Kolch, Walter; Kriegsheim, Alexander; Dorotikova, Anna; Andrysik, Zdenek; Vichova, Rachel; Vacek, Ondrej; Soucek, Karel; Uldrijan, Stjepan
eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations. Journal Article
In: Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 44, pp. e2321305121, 2024, ISSN: 1091-6490 0027-8424, (Place: United States).
Abstract | Links | BibTeX | Tags: *Eukaryotic Initiation Factor-4F/metabolism/genetics, *GTP Phosphohydrolases/metabolism/genetics, *MAP Kinase Signaling System/genetics, *Melanoma/genetics/metabolism/pathology, *Membrane Proteins/metabolism/genetics, *Mutation, *Proto-Oncogene Proteins B-raf/genetics/metabolism, Animals, Cell Line, Dual Specificity Phosphatase 6/metabolism/genetics, DUSP6, eIF4F, ERK, Extracellular Signal-Regulated MAP Kinases/metabolism, Humans, MAP kinase, Melanoma, Mice, Tumor
@article{valcikova_eif4f_2024,
title = {eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations.},
author = {Barbora Valcikova and Natalia Vadovicova and Karolina Smolkova and Magdalena Zacpalova and Pavel Krejci and Shannon Lee and Jens Rauch and Walter Kolch and Alexander Kriegsheim and Anna Dorotikova and Zdenek Andrysik and Rachel Vichova and Ondrej Vacek and Karel Soucek and Stjepan Uldrijan},
doi = {10.1073/pnas.2321305121},
issn = {1091-6490 0027-8424},
year = {2024},
date = {2024-10-01},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {121},
number = {44},
pages = {e2321305121},
abstract = {The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.},
note = {Place: United States},
keywords = {*Eukaryotic Initiation Factor-4F/metabolism/genetics, *GTP Phosphohydrolases/metabolism/genetics, *MAP Kinase Signaling System/genetics, *Melanoma/genetics/metabolism/pathology, *Membrane Proteins/metabolism/genetics, *Mutation, *Proto-Oncogene Proteins B-raf/genetics/metabolism, Animals, Cell Line, Dual Specificity Phosphatase 6/metabolism/genetics, DUSP6, eIF4F, ERK, Extracellular Signal-Regulated MAP Kinases/metabolism, Humans, MAP kinase, Melanoma, Mice, Tumor},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jiřina; Fedr, Radek; Hradilová, Barbora; Kvokačková, Barbora; Slavík, Josef; Kováč, Ondrej; Machala, Miroslav; Fabian, Pavel; Navrátil, Jiří; Kráčalíková, Simona; Levková, Monika; Ovesná, Petra; Bouchal, Jan; Souček, Karel
In: Journal of lipid research, vol. 65, no. 9, pp. 100609, 2024, ISSN: 1539-7262 0022-2275, (Place: United States).
Abstract | Links | BibTeX | Tags: *Breast Neoplasms/metabolism/pathology, *Epithelial-Mesenchymal Transition, *Glycosphingolipids/metabolism/analysis, *Single-Cell Analysis/methods, Breast cancer, Epithelial Cells, Female, Glycosphingolipids, Humans, Phenotype, phenotypic plasticity, stromal-like cells, surface profiling
@article{prochazkova_single-cell_2024,
title = {Single-cell profiling of surface glycosphingolipids opens a new dimension for deconvolution of breast cancer intratumoral heterogeneity and phenotypic plasticity.},
author = {Jiřina Procházková and Radek Fedr and Barbora Hradilová and Barbora Kvokačková and Josef Slavík and Ondrej Kováč and Miroslav Machala and Pavel Fabian and Jiří Navrátil and Simona Kráčalíková and Monika Levková and Petra Ovesná and Jan Bouchal and Karel Souček},
doi = {10.1016/j.jlr.2024.100609},
issn = {1539-7262 0022-2275},
year = {2024},
date = {2024-09-01},
journal = {Journal of lipid research},
volume = {65},
number = {9},
pages = {100609},
abstract = {Glycosylated sphingolipids (GSLs) are a diverse group of cellular lipids typically reported as being rare in normal mammary tissue. In breast cancer (BCa), GSLs have emerged as noteworthy markers associated with breast cancer stem cells, mediators of phenotypic plasticity, and contributors to cancer cell chemoresistance. GSLs are potential surface markers that can uniquely characterize the heterogeneity of the tumor microenvironment, including cancer cell subpopulations and epithelial-mesenchymal plasticity (EMP). In this study, mass spectrometry analyses of the total sphingolipidome in breast epithelial cells and their mesenchymal counterparts revealed increased levels of Gb3 in epithelial cells and significantly elevated GD2 levels in the mesenchymal phenotype. To elucidate if GSL-related epitopes on BCa cell surfaces reflect EMP and cancer status, we developed and rigorously validated a 12-color spectral flow cytometry panel. This panel enables the simultaneous detection of native GSL epitopes (Gb3, SSEA1, SSEA3, SSEA4, and GD2), epithelial-mesenchymal transition markers (EpCAM, TROP2, and CD9), and lineage markers (CD45, CD31, and CD90) at the single-cell level. Next, the established panel was used for the analysis of BCa primary tumors and revealed surface heterogeneity in SSEA1, SSEA3, SSEA4, GD2, and Gb3, indicative of native epitope presence also on non-tumor cells. These findings further highlighted the phenotype-dependent alterations in GSL surface profiles, with differences between epithelial and stromal cells in the tumor. This study provides novel insights into BCa heterogeneity, shedding light on the potential of native GSL-related epitopes as markers for EMP and cancer status in fresh clinical samples. The developed single-cell approach offers promising avenues for further exploration.},
note = {Place: United States},
keywords = {*Breast Neoplasms/metabolism/pathology, *Epithelial-Mesenchymal Transition, *Glycosphingolipids/metabolism/analysis, *Single-Cell Analysis/methods, Breast cancer, Epithelial Cells, Female, Glycosphingolipids, Humans, Phenotype, phenotypic plasticity, stromal-like cells, surface profiling},
pubstate = {published},
tppubtype = {article}
}
Besse, Andrej; Sedlarikova, Lenka; Buechler, Lorina; Kraus, Marianne; Yang, Chieh-Hsiang; Strakova, Nicol; Soucek, Karel; Navratil, Jiri; Svoboda, Marek; Welm, Alana L.; Joerger, Markus; Driessen, Christoph; Besse, Lenka
HIV-protease inhibitors potentiate the activity of carfilzomib in triple-negative breast cancer. Journal Article
In: British journal of cancer, vol. 131, no. 5, pp. 918–930, 2024, ISSN: 1532-1827 0007-0920, (Place: England).
Abstract | Links | BibTeX | Tags: *ATP Binding Cassette Transporter, *Bortezomib/pharmacology, *Drug Synergism, *HIV Protease Inhibitors/pharmacology, *Lopinavir/pharmacology, *Nelfinavir/pharmacology, *Oligopeptides/pharmacology, *Triple Negative Breast Neoplasms/drug therapy/pathology, *Unfolded Protein Response/drug effects, Antineoplastic Combined Chemotherapy Protocols/pharmacology, Apoptosis/drug effects, ATP Binding Cassette Transporter, Cell Line, Endoplasmic Reticulum Stress/drug effects, Female, Humans, Member 2/metabolism/antagonists & inhibitors, Neoplasm Proteins/antagonists & inhibitors/metabolism, Proteasome Inhibitors/pharmacology, Subfamily B/metabolism, Subfamily G, Tumor, X-Box Binding Protein 1/metabolism/genetics
@article{besse_hiv-protease_2024,
title = {HIV-protease inhibitors potentiate the activity of carfilzomib in triple-negative breast cancer.},
author = {Andrej Besse and Lenka Sedlarikova and Lorina Buechler and Marianne Kraus and Chieh-Hsiang Yang and Nicol Strakova and Karel Soucek and Jiri Navratil and Marek Svoboda and Alana L. Welm and Markus Joerger and Christoph Driessen and Lenka Besse},
doi = {10.1038/s41416-024-02774-9},
issn = {1532-1827 0007-0920},
year = {2024},
date = {2024-09-01},
journal = {British journal of cancer},
volume = {131},
number = {5},
pages = {918–930},
abstract = {BACKGROUND: Resistance to chemotherapy is a major problem in the treatment of patients with triple-negative breast cancer (TNBC). Preclinical data suggest that TNBC is dependent on proteasomes; however, clinical observations indicate that the efficacy of proteasome inhibitors in TNBC may be limited, suggesting the need for combination therapies. METHODS: We compared bortezomib and carfilzomib and their combinations with nelfinavir and lopinavir in TNBC cell lines and primary cells with regard to their cytotoxic activity, functional proteasome inhibition, and induction of the unfolded protein response (UPR). Furthermore, we evaluated the involvement of sXBP1, ABCB1, and ABCG2 in the cytotoxic activity of drug combinations. RESULTS: Carfilzomib, via proteasome β5 + β2 inhibition, is more cytotoxic in TNBC than bortezomib, which inhibits β5 + β1 proteasome subunits. The cytotoxicity of carfilzomib was significantly potentiated by nelfinavir or lopinavir. Carfilzomib with lopinavir induced endoplasmic reticulum stress and pro-apoptotic UPR through the accumulation of excess proteasomal substrate protein in TNBC in vitro. Moreover, lopinavir increased the intracellular availability of carfilzomib by inhibiting carfilzomib export from cells that express high levels and activity of ABCB1, but not ABCG2. CONCLUSION: Proteasome inhibition by carfilzomib combined with nelfinavir/lopinavir represents a potential treatment option for TNBC, warranting further investigation.},
note = {Place: England},
keywords = {*ATP Binding Cassette Transporter, *Bortezomib/pharmacology, *Drug Synergism, *HIV Protease Inhibitors/pharmacology, *Lopinavir/pharmacology, *Nelfinavir/pharmacology, *Oligopeptides/pharmacology, *Triple Negative Breast Neoplasms/drug therapy/pathology, *Unfolded Protein Response/drug effects, Antineoplastic Combined Chemotherapy Protocols/pharmacology, Apoptosis/drug effects, ATP Binding Cassette Transporter, Cell Line, Endoplasmic Reticulum Stress/drug effects, Female, Humans, Member 2/metabolism/antagonists & inhibitors, Neoplasm Proteins/antagonists & inhibitors/metabolism, Proteasome Inhibitors/pharmacology, Subfamily B/metabolism, Subfamily G, Tumor, X-Box Binding Protein 1/metabolism/genetics},
pubstate = {published},
tppubtype = {article}
}
Němec, Václav; Remeš, Marek; Beňovský, Petr; Böck, Michael C.; Šranková, Eliška; Wong, Jong Fu; Cros, Julien; Williams, Eleanor; Tse, Lap Hang; Smil, David; Ensan, Deeba; Isaac, Methvin B.; Al-Awar, Rima; Gomolková, Regina; Ursachi, Vlad-Constantin; Fafílek, Bohumil; Kahounová, Zuzana; Víchová, Ráchel; Vacek, Ondřej; Berger, Benedict-Tilman; Wells, Carrow I.; Corona, Cesear R.; Vasta, James D.; Robers, Matthew B.; Krejci, Pavel; Souček, Karel; Bullock, Alex N.; Knapp, Stefan; Paruch, Kamil
Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2. Journal Article
In: Journal of medicinal chemistry, vol. 67, no. 15, pp. 12632–12659, 2024, ISSN: 1520-4804 0022-2623, (Place: United States).
Abstract | Links | BibTeX | Tags: *Activin Receptors, Activin Receptors, Animals, Bone Morphogenetic Proteins/metabolism, Drug Discovery, Humans, Mice, Molecular Probes/chemistry, Protein Kinase Inhibitors/pharmacology/chemistry, Pyrazoles/chemistry/pharmacology/chemical synthesis, Signal Transduction/drug effects, Structure-Activity Relationship, Type I/antagonists & inhibitors/metabolism, Type II/metabolism/antagonists & inhibitors
@article{nemec_discovery_2024,
title = {Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2.},
author = {Václav Němec and Marek Remeš and Petr Beňovský and Michael C. Böck and Eliška Šranková and Jong Fu Wong and Julien Cros and Eleanor Williams and Lap Hang Tse and David Smil and Deeba Ensan and Methvin B. Isaac and Rima Al-Awar and Regina Gomolková and Vlad-Constantin Ursachi and Bohumil Fafílek and Zuzana Kahounová and Ráchel Víchová and Ondřej Vacek and Benedict-Tilman Berger and Carrow I. Wells and Cesear R. Corona and James D. Vasta and Matthew B. Robers and Pavel Krejci and Karel Souček and Alex N. Bullock and Stefan Knapp and Kamil Paruch},
doi = {10.1021/acs.jmedchem.4c00629},
issn = {1520-4804 0022-2623},
year = {2024},
date = {2024-08-01},
journal = {Journal of medicinal chemistry},
volume = {67},
number = {15},
pages = {12632–12659},
abstract = {Activin receptor-like kinases 1-7 (ALK1-7) regulate a complex network of SMAD-independent as well as SMAD-dependent signaling pathways. One of the widely used inhibitors for functional investigations of these processes, in particular for bone morphogenetic protein (BMP) signaling, is LDN-193189. However, LDN-193189 has insufficient kinome-wide selectivity complicating its use in cellular target validation assays. Herein, we report the identification and comprehensive characterization of two chemically distinct highly selective inhibitors of ALK1 and ALK2, M4K2234 and MU1700, along with their negative controls. We show that both MU1700 and M4K2234 efficiently block the BMP pathway via selective in cellulo inhibition of ALK1/2 kinases and exhibit favorable in vivo profiles in mice. MU1700 is highly brain penetrant and shows remarkably high accumulation in the brain. These high-quality orthogonal chemical probes offer the selectivity required to become widely used tools for in vitro and in vivo investigation of BMP signaling.},
note = {Place: United States},
keywords = {*Activin Receptors, Activin Receptors, Animals, Bone Morphogenetic Proteins/metabolism, Drug Discovery, Humans, Mice, Molecular Probes/chemistry, Protein Kinase Inhibitors/pharmacology/chemistry, Pyrazoles/chemistry/pharmacology/chemical synthesis, Signal Transduction/drug effects, Structure-Activity Relationship, Type I/antagonists & inhibitors/metabolism, Type II/metabolism/antagonists & inhibitors},
pubstate = {published},
tppubtype = {article}
}
Pícková, Markéta; Kahounová, Zuzana; Radaszkiewicz, Tomasz; Procházková, Jiřina; Fedr, Radek; Nosková, Michaela; Radaszkiewicz, Katarzyna Anna; Ovesná, Petra; Bryja, Vítězslav; Souček, Karel
Orthotopic model for the analysis of melanoma circulating tumor cells. Journal Article
In: Scientific reports, vol. 14, no. 1, pp. 7827, 2024, ISSN: 2045-2322, (Place: England).
Abstract | Links | BibTeX | Tags: *Melanoma/pathology, *Neoplastic Cells, *Skin Neoplasms/pathology, Animals, Circulating tumor cells, Circulating/pathology, Flow Cytometry, Humans, In vivo model, Lymphatic Metastasis, Melanoma, Metastasis, Tumorectomy
@article{pickova_orthotopic_2024,
title = {Orthotopic model for the analysis of melanoma circulating tumor cells.},
author = {Markéta Pícková and Zuzana Kahounová and Tomasz Radaszkiewicz and Jiřina Procházková and Radek Fedr and Michaela Nosková and Katarzyna Anna Radaszkiewicz and Petra Ovesná and Vítězslav Bryja and Karel Souček},
doi = {10.1038/s41598-024-58236-y},
issn = {2045-2322},
year = {2024},
date = {2024-04-01},
journal = {Scientific reports},
volume = {14},
number = {1},
pages = {7827},
abstract = {Metastatic melanoma, a highly lethal form of skin cancer, presents significant clinical challenges due to limited therapeutic options and high metastatic capacity. Recent studies have demonstrated that cancer dissemination can occur earlier, before the diagnosis of the primary tumor. The progress in understanding the kinetics of cancer dissemination is limited by the lack of animal models that accurately mimic disease progression. We have established a xenograft model of human melanoma that spontaneously metastasizes to lymph nodes and lungs. This model allows precise monitoring of melanoma progression and is suitable for the quantitative and qualitative analysis of circulating tumor cells (CTCs). We have validated a flow cytometry-based protocol for CTCs enumeration and isolation. We could demonstrate that (i) CTCs were detectable in the bloodstream from the fourth week after tumor initiation, coinciding with the lymph node metastases appearance, (ii) excision of the primary tumor accelerated the formation of metastases in lymph nodes and lungs as early as one-week post-surgery, accompanied by the increased numbers of CTCs, and (iii) CTCs change their surface protein signature. In summary, we present a model of human melanoma that can be effectively utilized for future drug efficacy studies.},
note = {Place: England},
keywords = {*Melanoma/pathology, *Neoplastic Cells, *Skin Neoplasms/pathology, Animals, Circulating tumor cells, Circulating/pathology, Flow Cytometry, Humans, In vivo model, Lymphatic Metastasis, Melanoma, Metastasis, Tumorectomy},
pubstate = {published},
tppubtype = {article}
}
Hýžďalová, Martina; Procházková, Jiřina; Straková, Nicol; Pěnčíková, Kateřina; Strapáčová, Simona; Slováčková, Jana; Kajabová, Simona; Líbalová, Helena; Topinka, Jan; Kabátková, Markéta; Vondráček, Jan; Mollerup, Steen; Machala, Miroslav
In: Environmental toxicology and pharmacology, vol. 107, pp. 104424, 2024, ISSN: 1872-7077 1382-6689, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Benzo(a)pyrene/toxicity, *Epithelial Cells/metabolism, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/metabolism, Benzo[a]pyrene, DNA Damage, Epithelial-Mesenchymal Transition, Human bronchial epithelial cells, Humans, Ligands, Receptors
@article{hyzdalova_transcriptional_2024,
title = {Transcriptional and phenotypical alterations associated with a gradual benzo[a]pyrene-induced transition of human bronchial epithelial cells into mesenchymal-like cells.},
author = {Martina Hýžďalová and Jiřina Procházková and Nicol Straková and Kateřina Pěnčíková and Simona Strapáčová and Jana Slováčková and Simona Kajabová and Helena Líbalová and Jan Topinka and Markéta Kabátková and Jan Vondráček and Steen Mollerup and Miroslav Machala},
doi = {10.1016/j.etap.2024.104424},
issn = {1872-7077 1382-6689},
year = {2024},
date = {2024-04-01},
journal = {Environmental toxicology and pharmacology},
volume = {107},
pages = {104424},
abstract = {The role of benzo[a]pyrene (BaP), a prominent genotoxic carcinogen and aryl hydrocarbon receptor (AhR) ligand, in tumor progression remains poorly characterized. We investigated the impact of BaP on the process of epithelial-mesenchymal transition (EMT) in normal human bronchial epithelial HBEC-12KT cells. Early morphological changes after 2-week exposure were accompanied with induction of SERPINB2, IL1, CDKN1A/p21 (linked with cell cycle delay) and chemokine CXCL5. After 8-week exposure, induction of cell migration and EMT-related pattern of markers/regulators led to induction of further pro-inflammatory cytokines or non-canonical Wnt pathway ligand WNT5A. This trend of up-regulation of pro-inflammatory genes and non-canonical Wnt pathway constituents was observed also in the BaP-transformed HBEC-12KT-B1 cells. In general, transcriptional effects of BaP differed from those of TGFβ1, a prototypical EMT inducer, or a model non-genotoxic AhR ligand, TCDD. Carcinogenic polycyclic aromatic hydrocarbons could thus induce a unique set of molecular changes linked with EMT and cancer progression.},
note = {Place: Netherlands},
keywords = {*Benzo(a)pyrene/toxicity, *Epithelial Cells/metabolism, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/metabolism, Benzo[a]pyrene, DNA Damage, Epithelial-Mesenchymal Transition, Human bronchial epithelial cells, Humans, Ligands, Receptors},
pubstate = {published},
tppubtype = {article}
}
2023
Holme, Jørn A.; Vondráček, Jan; Machala, Miroslav; Lagadic-Gossmann, Dominique; Vogel, Christoph F. A.; Ferrec, Eric Le; Sparfel, Lydie; Øvrevik, Johan
In: Biochemical pharmacology, vol. 216, pp. 115801, 2023, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Air Pollutants/toxicity, *Lung Neoplasms/chemically induced/genetics, *Polycyclic Aromatic Hydrocarbons/toxicity, Air pollution, Aryl Hydrocarbon/genetics, Carcinogenesis, Diesel exhaust, Environmental Monitoring, Genotoxicity, Humans, Inflammation, Occupational exposure, Particulate Matter/toxicity, Receptors, Smoking, Tumor metastasis, Tumor microenvironment, Tumor promotion
@article{holme_lung_2023,
title = {Lung cancer associated with combustion particles and fine particulate matter (PM(2.5)) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR).},
author = {Jørn A. Holme and Jan Vondráček and Miroslav Machala and Dominique Lagadic-Gossmann and Christoph F. A. Vogel and Eric Le Ferrec and Lydie Sparfel and Johan Øvrevik},
doi = {10.1016/j.bcp.2023.115801},
issn = {1873-2968 0006-2952},
year = {2023},
date = {2023-10-01},
journal = {Biochemical pharmacology},
volume = {216},
pages = {115801},
abstract = {Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM(2.5)), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM(2.5) exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM(2.5) represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM(2.5), whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.},
note = {Place: England},
keywords = {*Air Pollutants/toxicity, *Lung Neoplasms/chemically induced/genetics, *Polycyclic Aromatic Hydrocarbons/toxicity, Air pollution, Aryl Hydrocarbon/genetics, Carcinogenesis, Diesel exhaust, Environmental Monitoring, Genotoxicity, Humans, Inflammation, Occupational exposure, Particulate Matter/toxicity, Receptors, Smoking, Tumor metastasis, Tumor microenvironment, Tumor promotion},
pubstate = {published},
tppubtype = {article}
}
Sládeková, Lucia; Zgarbová, Eliška; Vrzal, Radim; Vanda, David; Soural, Miroslav; Jakubcová, Klára; Vázquez-Gómez, Gerardo; Vondráček, Jan; Dvořák, Zdeněk
Switching on/off aryl hydrocarbon receptor and pregnane X receptor activities by chemically modified tryptamines. Journal Article
In: Toxicology letters, vol. 387, pp. 63–75, 2023, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Receptors, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Caco-2 Cells, Humans, Indoles/pharmacology, Microbial indoles, Pregnane X receptor, Pregnane X Receptor/genetics, Steroid/metabolism, Tryptamine, Tryptamines/pharmacology
@article{sladekova_switching_2023,
title = {Switching on/off aryl hydrocarbon receptor and pregnane X receptor activities by chemically modified tryptamines.},
author = {Lucia Sládeková and Eliška Zgarbová and Radim Vrzal and David Vanda and Miroslav Soural and Klára Jakubcová and Gerardo Vázquez-Gómez and Jan Vondráček and Zdeněk Dvořák},
doi = {10.1016/j.toxlet.2023.09.012},
issn = {1879-3169 0378-4274},
year = {2023},
date = {2023-09-01},
journal = {Toxicology letters},
volume = {387},
pages = {63–75},
abstract = {Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.},
note = {Place: Netherlands},
keywords = {*Receptors, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Caco-2 Cells, Humans, Indoles/pharmacology, Microbial indoles, Pregnane X receptor, Pregnane X Receptor/genetics, Steroid/metabolism, Tryptamine, Tryptamines/pharmacology},
pubstate = {published},
tppubtype = {article}
}
Kahounová, Zuzana; Pícková, Markéta; Drápela, Stanislav; Bouchal, Jan; Szczyrbová, Eva; Navrátil, Jiří; Souček, Karel
Circulating tumor cell-derived preclinical models: current status and future perspectives. Journal Article
In: Cell death & disease, vol. 14, no. 8, pp. 530, 2023, ISSN: 2041-4889, (Place: England).
Abstract | Links | BibTeX | Tags: *Neoplastic Cells, Cell Culture Techniques, Circulating, Heterografts, Heterologous, Humans, Precision Medicine, Transplantation
@article{kahounova_circulating_2023,
title = {Circulating tumor cell-derived preclinical models: current status and future perspectives.},
author = {Zuzana Kahounová and Markéta Pícková and Stanislav Drápela and Jan Bouchal and Eva Szczyrbová and Jiří Navrátil and Karel Souček},
doi = {10.1038/s41419-023-06059-6},
issn = {2041-4889},
year = {2023},
date = {2023-08-01},
journal = {Cell death & disease},
volume = {14},
number = {8},
pages = {530},
abstract = {Despite the advancements made in the diagnosis and treatment of cancer, the stages associated with metastasis remain largely incurable and represent the primary cause of cancer-related deaths. The dissemination of cancer is facilitated by circulating tumor cells (CTCs), which originate from the primary tumor or metastatic sites and enter the bloodstream, subsequently spreading to distant parts of the body. CTCs have garnered significant attention in research due to their accessibility in peripheral blood, despite their low abundance. They are being extensively studied to gain a deeper understanding of the mechanisms underlying cancer dissemination and to identify effective therapeutic strategies for advanced stages of the disease. Therefore, substantial efforts have been directed towards establishing and characterizing relevant experimental models derived from CTCs, aiming to provide relevant tools for research. In this review, we provide an overview of recent progress in the establishment of preclinical CTC-derived models, such as CTC-derived xenografts (CDX) and cell cultures, which show promise for the study of CTCs. We discuss the advantages and limitations of these models and conclude by summarizing the potential future use of CTCs and CTC-derived models in cancer treatment decisions and their utility as precision medicine tools.},
note = {Place: England},
keywords = {*Neoplastic Cells, Cell Culture Techniques, Circulating, Heterografts, Heterologous, Humans, Precision Medicine, Transplantation},
pubstate = {published},
tppubtype = {article}
}
Marvanová, Soňa; Pěnčíková, Kateřina; Pálková, Lenka; Ciganek, Miroslav; Petráš, Jiří; Lněničková, Anna; Vondráček, Jan; Machala, Miroslav
Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence. Journal Article
In: The Science of the total environment, vol. 879, pp. 162924, 2023, ISSN: 1879-1026 0048-9697, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Environmental Pollutants, *Heterocyclic Compounds, AhR activity, Airborne particulate matter, Animals, Aryl Hydrocarbon, Freshwater sediments, Gap junctional intercellular communication, Humans, Particulate Matter, Polycyclic aromatic sulfur heterocyclic compounds, Rats, Receptors, Thiophenes/toxicity/metabolism
@article{marvanova_benzobnaphthodthiophenes_2023,
title = {Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence.},
author = {Soňa Marvanová and Kateřina Pěnčíková and Lenka Pálková and Miroslav Ciganek and Jiří Petráš and Anna Lněničková and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.scitotenv.2023.162924},
issn = {1879-1026 0048-9697},
year = {2023},
date = {2023-06-01},
journal = {The Science of the total environment},
volume = {879},
pages = {162924},
abstract = {Polycyclic aromatic sulfur heterocyclic compounds (PASHs) belong among ubiquitous environmental pollutants; however, their toxic effects remain poorly understood. Here, we studied the aryl hydrocarbon receptor (AhR)-mediated activity of dibenzothiophene, benzo[b]naphtho[d]thiophenes, and naphthylbenzo[b]thiophenes, as well as their presence in two types of environmental matrices: river sediments collected from both rural and urban areas, and in airborne particulate matter (PM(2.5)) sampled in cities with different levels and sources of pollution. Benzo[b]naphtho[2,1-d]thiophene, benzo[b]naphtho[2,3-d]thiophene, 2,2-naphthylbenzo[b]thiophene, and 2,1-naphthylbenzo[b]thiophene were newly identified as efficient AhR agonists in both rat and human AhR-based reporter gene assays, with 2,2-naphthylbenzo[b]thiophene being the most potent compound identified in both species. Benzo[b]naphtho[1,2-d]thiophene and 3,2-naphthylbenzo[b]thiophene elicited AhR-mediated activity only in the rat liver cell model, while dibenzothiophene and 3,1-naphthylbenzo[b]thiophene were inactive in either cell type. Independently of their ability to activate the AhR, benzo[b]naphtho[1,2-d]thiophene, 2,1-naphthylbenzo[b]thiophene, 3,1-naphthylbenzo[b]thiophene, and 3,2-naphthylbenzo[b]thiophene inhibited gap junctional intercellular communication in a model of rat liver epithelial cells. Benzo[b]naphtho[d]thiophenes were dominant PASHs present in both PM(2.5) and sediment samples, with benzo[b]naphtho[2,1-d]thiophene being the most abundant one, followed by benzo[b]naphtho[2,3-d]thiophene. The levels of naphthylbenzo[b]thiophenes were mostly low or below detection limit. Benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[2,3-d]thiophene were identified as the most significant contributors to the AhR-mediated activity in the environmental samples evaluated in this study. Both induced nuclear translocation of the AhR, and they induced CYP1A1 expression in a time-dependent manner, suggesting that their AhR-mediated activity may depend on the rate of their intracellular metabolism. In conclusion, some PASHs could be significant contributors to the overall AhR-mediated toxicity of complex environmental samples suggesting that more attention should be paid to the potential health impacts of this group of environmental pollutants.},
note = {Place: Netherlands},
keywords = {*Environmental Pollutants, *Heterocyclic Compounds, AhR activity, Airborne particulate matter, Animals, Aryl Hydrocarbon, Freshwater sediments, Gap junctional intercellular communication, Humans, Particulate Matter, Polycyclic aromatic sulfur heterocyclic compounds, Rats, Receptors, Thiophenes/toxicity/metabolism},
pubstate = {published},
tppubtype = {article}
}
Kvokačková, Barbora; Fedr, Radek; Kužílková, Daniela; Stuchlý, Jan; Vávrová, Adéla; Navrátil, Jiří; Fabian, Pavel; Ondruššek, Róbert; Ovesná, Petra; Remšík, Ján; Bouchal, Jan; Kalina, Tomáš; Souček, Karel
Single-cell protein profiling defines cell populations associated with triple-negative breast cancer aggressiveness. Journal Article
In: Molecular oncology, vol. 17, no. 6, pp. 1024–1040, 2023, ISSN: 1878-0261 1574-7891, (Place: United States).
Abstract | Links | BibTeX | Tags: *Triple Negative Breast Neoplasms/metabolism, Cell Line, Humans, mass cytometry, phenotypic plasticity, Proteomics, Retrospective Studies, Signal Transduction, single-cell profiles, Stromal Cells/metabolism, triple-negative breast cancer, Tumor, tumor heterogeneity, Tumor microenvironment, unsupervised machine learning algorithm
@article{kvokackova_single-cell_2023,
title = {Single-cell protein profiling defines cell populations associated with triple-negative breast cancer aggressiveness.},
author = {Barbora Kvokačková and Radek Fedr and Daniela Kužílková and Jan Stuchlý and Adéla Vávrová and Jiří Navrátil and Pavel Fabian and Róbert Ondruššek and Petra Ovesná and Ján Remšík and Jan Bouchal and Tomáš Kalina and Karel Souček},
doi = {10.1002/1878-0261.13365},
issn = {1878-0261 1574-7891},
year = {2023},
date = {2023-06-01},
journal = {Molecular oncology},
volume = {17},
number = {6},
pages = {1024–1040},
abstract = {Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer that lacks targeted therapy. TNBC manifests characteristic, extensive intratumoral heterogeneity that promotes disease progression and influences drug response. Single-cell techniques in combination with next-generation computation provide an unprecedented opportunity to identify molecular events with therapeutic potential. Here, we describe the generation of a comprehensive mass cytometry panel for multiparametric detection of 23 phenotypic markers and 13 signaling molecules. This single-cell proteomic approach allowed us to explore the landscape of TNBC heterogeneity, with particular emphasis on the tumor microenvironment. We prospectively profiled freshly resected tumors from 26 TNBC patients. These tumors contained phenotypically distinct subpopulations of cancer and stromal cells that were associated with the patient's clinical status at the time of surgery. We further classified the epithelial-mesenchymal plasticity of tumor cells, and molecularly defined phenotypically diverse populations of tumor-associated stroma. Furthermore, in a retrospective tissue-microarray TNBC cohort, we showed that the level of CD97 at the time of surgery has prognostic potential.},
note = {Place: United States},
keywords = {*Triple Negative Breast Neoplasms/metabolism, Cell Line, Humans, mass cytometry, phenotypic plasticity, Proteomics, Retrospective Studies, Signal Transduction, single-cell profiles, Stromal Cells/metabolism, triple-negative breast cancer, Tumor, tumor heterogeneity, Tumor microenvironment, unsupervised machine learning algorithm},
pubstate = {published},
tppubtype = {article}
}
2022
Bernal, Kévin; Touma, Charbel; Erradhouani, Chedi; Boronat-Belda, Talía; Gaillard, Lucas; Kassir, Sara Al; Mentec, Hélène Le; Martin-Chouly, Corinne; Podechard, Normand; Lagadic-Gossmann, Dominique; Langouet, Sophie; Brion, François; Knoll-Gellida, Anja; Babin, Patrick J.; Sovadinova, Iva; Babica, Pavel; Andreau, Karine; Barouki, Robert; Vondracek, Jan; Alonso-Magdalena, Paloma; Blanc, Etienne; Kim, Min Ji; Coumoul, Xavier
Combinatorial pathway disruption is a powerful approach to delineate metabolic impacts of endocrine disruptors. Journal Article
In: FEBS letters, vol. 596, no. 24, pp. 3107–3123, 2022, ISSN: 1873-3468 0014-5793, (Place: England).
Abstract | Links | BibTeX | Tags: *Endocrine Disruptors/toxicity, *Metabolic Syndrome, appetite, bisphenol, dioxin, Humans, Inflammation, insulin resistance, microbiota, Obesity/chemically induced, perfluorinated compounds, Phenols, phthalate, TBT
@article{bernal_combinatorial_2022,
title = {Combinatorial pathway disruption is a powerful approach to delineate metabolic impacts of endocrine disruptors.},
author = {Kévin Bernal and Charbel Touma and Chedi Erradhouani and Talía Boronat-Belda and Lucas Gaillard and Sara Al Kassir and Hélène Le Mentec and Corinne Martin-Chouly and Normand Podechard and Dominique Lagadic-Gossmann and Sophie Langouet and François Brion and Anja Knoll-Gellida and Patrick J. Babin and Iva Sovadinova and Pavel Babica and Karine Andreau and Robert Barouki and Jan Vondracek and Paloma Alonso-Magdalena and Etienne Blanc and Min Ji Kim and Xavier Coumoul},
doi = {10.1002/1873-3468.14465},
issn = {1873-3468 0014-5793},
year = {2022},
date = {2022-12-01},
journal = {FEBS letters},
volume = {596},
number = {24},
pages = {3107–3123},
abstract = {The prevalence of metabolic diseases, such as obesity, diabetes, metabolic syndrome and chronic liver diseases among others, has been rising for several years. Epidemiology and mechanistic (in vivo, in vitro and in silico) toxicology have recently provided compelling evidence implicating the chemical environment in the pathogenesis of these diseases. In this review, we will describe the biological processes that contribute to the development of metabolic diseases targeted by metabolic disruptors, and will propose an integrated pathophysiological vision of their effects on several organs. With regard to these pathomechanisms, we will discuss the needs, and the stakes of evolving the testing and assessment of endocrine disruptors to improve the prevention and management of metabolic diseases that have become a global epidemic since the end of last century.},
note = {Place: England},
keywords = {*Endocrine Disruptors/toxicity, *Metabolic Syndrome, appetite, bisphenol, dioxin, Humans, Inflammation, insulin resistance, microbiota, Obesity/chemically induced, perfluorinated compounds, Phenols, phthalate, TBT},
pubstate = {published},
tppubtype = {article}
}
Kotasová, Hana; Capandová, Michaela; Pelková, Vendula; Dumková, Jana; Koledová, Zuzana; Remšík, Ján; Souček, Karel; Garlíková, Zuzana; Sedláková, Veronika; Rabata, Anas; Vaňhara, Petr; Moráň, Lukáš; Pečinka, Lukáš; Porokh, Volodymyr; Kučírek, Martin; Streit, Libor; Havel, Josef; Hampl, Aleš
Expandable Lung Epithelium Differentiated from Human Embryonic Stem Cells. Journal Article
In: Tissue engineering and regenerative medicine, vol. 19, no. 5, pp. 1033–1050, 2022, ISSN: 2212-5469 1738-2696, (Place: Korea (South)).
Abstract | Links | BibTeX | Tags: *Human Embryonic Stem Cells, Cell Differentiation, Differentiation, Epithelium, Foregut endoderm, hESC, Humans, Lung, Lung/metabolism, Surface-Active Agents/metabolism
@article{kotasova_expandable_2022,
title = {Expandable Lung Epithelium Differentiated from Human Embryonic Stem Cells.},
author = {Hana Kotasová and Michaela Capandová and Vendula Pelková and Jana Dumková and Zuzana Koledová and Ján Remšík and Karel Souček and Zuzana Garlíková and Veronika Sedláková and Anas Rabata and Petr Vaňhara and Lukáš Moráň and Lukáš Pečinka and Volodymyr Porokh and Martin Kučírek and Libor Streit and Josef Havel and Aleš Hampl},
doi = {10.1007/s13770-022-00458-0},
issn = {2212-5469 1738-2696},
year = {2022},
date = {2022-10-01},
journal = {Tissue engineering and regenerative medicine},
volume = {19},
number = {5},
pages = {1033–1050},
abstract = {BACKGROUND: The progenitors to lung airway epithelium that are capable of long-term propagation may represent an attractive source of cells for cell-based therapies, disease modeling, toxicity testing, and others. Principally, there are two main options for obtaining lung epithelial progenitors: (i) direct isolation of endogenous progenitors from human lungs and (ii) in vitro differentiation from some other cell type. The prime candidates for the second approach are pluripotent stem cells, which may provide autologous and/or allogeneic cell resource in clinically relevant quality and quantity. METHODS: By exploiting the differentiation potential of human embryonic stem cells (hESC), here we derived expandable lung epithelium (ELEP) and established culture conditions for their long-term propagation (more than 6 months) in a monolayer culture without a need of 3D culture conditions and/or cell sorting steps, which minimizes potential variability of the outcome. RESULTS: These hESC-derived ELEP express NK2 Homeobox 1 (NKX2.1), a marker of early lung epithelial lineage, display properties of cells in early stages of surfactant production and are able to differentiate to cells exhibitting molecular and morphological characteristics of both respiratory epithelium of airway and alveolar regions. CONCLUSION: Expandable lung epithelium thus offer a stable, convenient, easily scalable and high-yielding cell source for applications in biomedicine.},
note = {Place: Korea (South)},
keywords = {*Human Embryonic Stem Cells, Cell Differentiation, Differentiation, Epithelium, Foregut endoderm, hESC, Humans, Lung, Lung/metabolism, Surface-Active Agents/metabolism},
pubstate = {published},
tppubtype = {article}
}
Muresan, Ximena M.; Slabáková, Eva; Procházková, Jiřina; Drápela, Stanislav; Fedr, Radek; Pícková, Markéta; Vacek, Ondřej; Víchová, Ráchel; Suchánková, Tereza; Bouchal, Jan; Kürfürstová, Daniela; Král, Milan; Hulínová, Tereza; Sýkora, Radek P.; Študent, Vladimír; Hejret, Václav; Weerden, Wytske M.; Puhr, Martin; Pustka, Václav; Potěšil, David; Zdráhal, Zbyněk; Culig, Zoran; Souček, Karel
Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, whereas Its Activation Triggers Apoptosis. Journal Article
In: The American journal of pathology, vol. 192, no. 9, pp. 1321–1335, 2022, ISSN: 1525-2191 0002-9440, (Place: United States).
Abstract | Links | BibTeX | Tags: *Prostatic Neoplasms/pathology, *Toll-Like Receptor 3/genetics/metabolism, Animals, Apoptosis, Cell Line, Humans, Male, Poly I-C/pharmacology, Prostate/pathology, Tumor
@article{muresan_toll-like_2022,
title = {Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, whereas Its Activation Triggers Apoptosis.},
author = {Ximena M. Muresan and Eva Slabáková and Jiřina Procházková and Stanislav Drápela and Radek Fedr and Markéta Pícková and Ondřej Vacek and Ráchel Víchová and Tereza Suchánková and Jan Bouchal and Daniela Kürfürstová and Milan Král and Tereza Hulínová and Radek P. Sýkora and Vladimír Študent and Václav Hejret and Wytske M. Weerden and Martin Puhr and Václav Pustka and David Potěšil and Zbyněk Zdráhal and Zoran Culig and Karel Souček},
doi = {10.1016/j.ajpath.2022.05.009},
issn = {1525-2191 0002-9440},
year = {2022},
date = {2022-09-01},
journal = {The American journal of pathology},
volume = {192},
number = {9},
pages = {1321–1335},
abstract = {Toll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and have described its role primarily in the proinflammatory response and induction of apoptosis. It is up-regulated in some castration-resistant prostate cancers. However, the role of TLR3 in prostate cancer progression remains largely unknown. The current study experimentally demonstrated that exogenous TLR3 activation in PCa cell lines leads to a significant induction of secretion of the cytokines IL-6, IL-8, and interferon-β, depending on the model and chemoresistance status. Transcriptomic analysis of TLR3-overexpressing cells revealed a functional program that is enriched for genes involved in the regulation of cell motility, migration, and tumor invasiveness. Increased motility, migration, and invasion in TLR3-overexpressing cell line were confirmed by several in vitro assays and using an orthotopic prostate xenograft model in vivo. Furthermore, TLR3-ligand induced apoptosis via cleavage of caspase-3/7 and poly (ADP-ribose) polymerase, predominantly in TLR3-overexpressing cells. These results indicate that TLR3 may be involved in prostate cancer progression and metastasis; however, it might also represent an Achilles heel of PCa, which can be exploited for targeted therapy.},
note = {Place: United States},
keywords = {*Prostatic Neoplasms/pathology, *Toll-Like Receptor 3/genetics/metabolism, Animals, Apoptosis, Cell Line, Humans, Male, Poly I-C/pharmacology, Prostate/pathology, Tumor},
pubstate = {published},
tppubtype = {article}
}
Smutná, Tereza; Dumková, Jana; Kristeková, Daniela; Laštovičková, Markéta; Jedličková, Adriena; Vrlíková, Lucie; Dočekal, Bohumil; Alexa, Lukáš; Kotasová, Hana; Pelková, Vendula; Večeřa, Zbyněk; Křůmal, Kamil; Petráš, Jiří; Coufalík, Pavel; Všianský, Dalibor; Záchej, Samuel; Pinkas, Dominik; Vondráček, Jan; Hampl, Aleš; Mikuška, Pavel; Buchtová, Marcela
In: Particle and fibre toxicology, vol. 19, no. 1, pp. 52, 2022, ISSN: 1743-8977, (Place: England).
Abstract | Links | BibTeX | Tags: *Metal Nanoparticles/chemistry, *Type C Phospholipases, Cholesterol, Cholesterol metabolism, Humans, Inflammation, Inhalation, Lead, Lead oxide nanoparticles, Liver macrophages, Lung macrophages, Macrophages, Oxides
@article{smutna_macrophage-mediated_2022,
title = {Macrophage-mediated tissue response evoked by subchronic inhalation of lead oxide nanoparticles is associated with the alteration of phospholipases C and cholesterol transporters.},
author = {Tereza Smutná and Jana Dumková and Daniela Kristeková and Markéta Laštovičková and Adriena Jedličková and Lucie Vrlíková and Bohumil Dočekal and Lukáš Alexa and Hana Kotasová and Vendula Pelková and Zbyněk Večeřa and Kamil Křůmal and Jiří Petráš and Pavel Coufalík and Dalibor Všianský and Samuel Záchej and Dominik Pinkas and Jan Vondráček and Aleš Hampl and Pavel Mikuška and Marcela Buchtová},
doi = {10.1186/s12989-022-00494-7},
issn = {1743-8977},
year = {2022},
date = {2022-08-01},
journal = {Particle and fibre toxicology},
volume = {19},
number = {1},
pages = {52},
abstract = {BACKGROUND: Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. RESULTS: The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCβ1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. CONCLUSION: Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure.},
note = {Place: England},
keywords = {*Metal Nanoparticles/chemistry, *Type C Phospholipases, Cholesterol, Cholesterol metabolism, Humans, Inflammation, Inhalation, Lead, Lead oxide nanoparticles, Liver macrophages, Lung macrophages, Macrophages, Oxides},
pubstate = {published},
tppubtype = {article}
}
Heindel, Jerrold J.; Howard, Sarah; Agay-Shay, Keren; Arrebola, Juan P.; Audouze, Karine; Babin, Patrick J.; Barouki, Robert; Bansal, Amita; Blanc, Etienne; Cave, Matthew C.; Chatterjee, Saurabh; Chevalier, Nicolas; Choudhury, Mahua; Collier, David; Connolly, Lisa; Coumoul, Xavier; Garruti, Gabriella; Gilbertson, Michael; Hoepner, Lori A.; Holloway, Alison C.; 3rd Howell, George; Kassotis, Christopher D.; Kay, Mathew K.; Kim, Min Ji; Lagadic-Gossmann, Dominique; Langouet, Sophie; Legrand, Antoine; Li, Zhuorui; Mentec, Helene Le; Lind, Lars; Lind, P. Monica; Lustig, Robert H.; Martin-Chouly, Corinne; Kos, Vesna Munic; Podechard, Normand; Roepke, Troy A.; Sargis, Robert M.; Starling, Anne; Tomlinson, Craig R.; Touma, Charbel; Vondracek, Jan; Saal, Frederick Vom; Blumberg, Bruce
Obesity II: Establishing causal links between chemical exposures and obesity. Journal Article
In: Biochemical pharmacology, vol. 199, pp. 115015, 2022, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Endocrine Disruptors/toxicity, Adipocyte differentiation, Adipogenesis, Adipose Tissue, Child, Endocrine disruptor, Environmental Exposure/adverse effects, Humans, Obesity, Obesity/etiology, Obesogen, Preschool, Weight Gain
@article{heindel_obesity_2022,
title = {Obesity II: Establishing causal links between chemical exposures and obesity.},
author = {Jerrold J. Heindel and Sarah Howard and Keren Agay-Shay and Juan P. Arrebola and Karine Audouze and Patrick J. Babin and Robert Barouki and Amita Bansal and Etienne Blanc and Matthew C. Cave and Saurabh Chatterjee and Nicolas Chevalier and Mahua Choudhury and David Collier and Lisa Connolly and Xavier Coumoul and Gabriella Garruti and Michael Gilbertson and Lori A. Hoepner and Alison C. Holloway and George 3rd Howell and Christopher D. Kassotis and Mathew K. Kay and Min Ji Kim and Dominique Lagadic-Gossmann and Sophie Langouet and Antoine Legrand and Zhuorui Li and Helene Le Mentec and Lars Lind and P. Monica Lind and Robert H. Lustig and Corinne Martin-Chouly and Vesna Munic Kos and Normand Podechard and Troy A. Roepke and Robert M. Sargis and Anne Starling and Craig R. Tomlinson and Charbel Touma and Jan Vondracek and Frederick Vom Saal and Bruce Blumberg},
doi = {10.1016/j.bcp.2022.115015},
issn = {1873-2968 0006-2952},
year = {2022},
date = {2022-05-01},
journal = {Biochemical pharmacology},
volume = {199},
pages = {115015},
abstract = {Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.},
note = {Place: England},
keywords = {*Endocrine Disruptors/toxicity, Adipocyte differentiation, Adipogenesis, Adipose Tissue, Child, Endocrine disruptor, Environmental Exposure/adverse effects, Humans, Obesity, Obesity/etiology, Obesogen, Preschool, Weight Gain},
pubstate = {published},
tppubtype = {article}
}
Lustig, Robert H.; Collier, David; Kassotis, Christopher; Roepke, Troy A.; Kim, Min Ji; Blanc, Etienne; Barouki, Robert; Bansal, Amita; Cave, Matthew C.; Chatterjee, Saurabh; Choudhury, Mahua; Gilbertson, Michael; Lagadic-Gossmann, Dominique; Howard, Sarah; Lind, Lars; Tomlinson, Craig R.; Vondracek, Jan; Heindel, Jerrold J.
Obesity I: Overview and molecular and biochemical mechanisms. Journal Article
In: Biochemical pharmacology, vol. 199, pp. 115012, 2022, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Leptin/metabolism, *Obesity/metabolism, Adipocytes/metabolism, Adipose Tissue, Adipose Tissue/metabolism, Energy balance, Energy Metabolism/physiology, Hormone receptors, Humans, Insulin/metabolism, metabolism, Microbiome, Obesity
@article{lustig_obesity_2022,
title = {Obesity I: Overview and molecular and biochemical mechanisms.},
author = {Robert H. Lustig and David Collier and Christopher Kassotis and Troy A. Roepke and Min Ji Kim and Etienne Blanc and Robert Barouki and Amita Bansal and Matthew C. Cave and Saurabh Chatterjee and Mahua Choudhury and Michael Gilbertson and Dominique Lagadic-Gossmann and Sarah Howard and Lars Lind and Craig R. Tomlinson and Jan Vondracek and Jerrold J. Heindel},
doi = {10.1016/j.bcp.2022.115012},
issn = {1873-2968 0006-2952},
year = {2022},
date = {2022-05-01},
journal = {Biochemical pharmacology},
volume = {199},
pages = {115012},
abstract = {Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY(3-36)) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.},
note = {Place: England},
keywords = {*Leptin/metabolism, *Obesity/metabolism, Adipocytes/metabolism, Adipose Tissue, Adipose Tissue/metabolism, Energy balance, Energy Metabolism/physiology, Hormone receptors, Humans, Insulin/metabolism, metabolism, Microbiome, Obesity},
pubstate = {published},
tppubtype = {article}
}
Říhová, Kamila; Dúcka, Monika; Zambo, Iva Staniczková; Vymětalová, Ladislava; Šrámek, Martin; Trčka, Filip; Verner, Jan; Drápela, Stanislav; Fedr, Radek; Suchánková, Tereza; Pavlatovská, Barbora; Ondroušková, Eva; Kubelková, Irena; Zapletalová, Danica; Tuček, Štěpán; Múdry, Peter; Krákorová, Dagmar Adámková; Knopfová, Lucia; Šmarda, Jan; Souček, Karel; Borsig, Lubor; Beneš, Petr
Transcription factor c-Myb: novel prognostic factor in osteosarcoma. Journal Article
In: Clinical & experimental metastasis, vol. 39, no. 2, pp. 375–390, 2022, ISSN: 1573-7276 0262-0898, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Bone Neoplasms/pathology, *Osteosarcoma/pathology, Animals, c-Myb, Cell Line, Cell Movement/genetics, Cell Proliferation, Chemoresistance, Gene Expression Regulation, Humans, Metastasis, Mice, Neoplastic, Osteosarcoma, Prognosis, proliferation, Retrospective Studies, Tumor, Wnt Signaling Pathway
@article{rihova_transcription_2022,
title = {Transcription factor c-Myb: novel prognostic factor in osteosarcoma.},
author = {Kamila Říhová and Monika Dúcka and Iva Staniczková Zambo and Ladislava Vymětalová and Martin Šrámek and Filip Trčka and Jan Verner and Stanislav Drápela and Radek Fedr and Tereza Suchánková and Barbora Pavlatovská and Eva Ondroušková and Irena Kubelková and Danica Zapletalová and Štěpán Tuček and Peter Múdry and Dagmar Adámková Krákorová and Lucia Knopfová and Jan Šmarda and Karel Souček and Lubor Borsig and Petr Beneš},
doi = {10.1007/s10585-021-10145-4},
issn = {1573-7276 0262-0898},
year = {2022},
date = {2022-04-01},
journal = {Clinical & experimental metastasis},
volume = {39},
number = {2},
pages = {375–390},
abstract = {The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.},
note = {Place: Netherlands},
keywords = {*Bone Neoplasms/pathology, *Osteosarcoma/pathology, Animals, c-Myb, Cell Line, Cell Movement/genetics, Cell Proliferation, Chemoresistance, Gene Expression Regulation, Humans, Metastasis, Mice, Neoplastic, Osteosarcoma, Prognosis, proliferation, Retrospective Studies, Tumor, Wnt Signaling Pathway},
pubstate = {published},
tppubtype = {article}
}
Šimečková, Pavlína; Pěnčíková, Kateřina; Kováč, Ondrej; Slavík, Josef; Pařenicová, Martina; Vondráček, Jan; Machala, Miroslav
In: The Science of the total environment, vol. 815, pp. 151967, 2022, ISSN: 1879-1026 0048-9697, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Polycyclic Aromatic Hydrocarbons/toxicity, Aryl Hydrocarbon/genetics/metabolism, Benzo(a)pyrene, Cellular stress response, Cytoplasmic and Nuclear/genetics, Energy Metabolism, Humans, Nuclear receptors, Polycyclic aromatic hydrocarbons, Receptors, Signal Transduction, Sphingolipids, Xenobiotics
@article{simeckova_vitro_2022,
title = {In vitro profiling of toxic effects of environmental polycyclic aromatic hydrocarbons on nuclear receptor signaling, disruption of endogenous metabolism and induction of cellular stress.},
author = {Pavlína Šimečková and Kateřina Pěnčíková and Ondrej Kováč and Josef Slavík and Martina Pařenicová and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.scitotenv.2021.151967},
issn = {1879-1026 0048-9697},
year = {2022},
date = {2022-04-01},
journal = {The Science of the total environment},
volume = {815},
pages = {151967},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) may interact with multiple intracellular receptors and related signaling pathways. We comprehensively evaluated the toxicity profiles of six environmentally relevant PAHs differing in structure, genotoxicity and their ability to activate the aryl hydrocarbon receptor (AhR). We focused particularly on their impact on intracellular hormone-, xenobiotic- and lipid-sensing receptors, as well as on cellular stress markers, combining a battery of human reporter gene assays and qRT-PCR evaluation of endogenous gene expression in human hepatocyte-like HepaRG cells, with LC/MS-MS analysis of cellular sphingolipids. The effects of PAHs included: activation of estrogen receptor α (in case of fluoranthene (Fla), pyrene (Pyr), benz[a]anthracene (BaA), benzo[a]pyrene (BaP)), suppression of androgen receptor activity (Fla, BaA, BaP and benzo[k]fluoranthene (BkF)), enhancement of dexamethasone-induced glucocorticoid receptor activity (chrysene (Chry), BaA, and BaP), and potentiation of triiodothyronine-induced thyroid receptor α activity (all tested PAHs). PAHs also induced transcription of endogenous gene targets of constitutive androstane receptor (Fla, Pyr), or repression of target genes of pregnane X receptor and peroxisome proliferator-activated receptor α (in case of the AhR-activating PAHs - Chry, BaA, BaP, and BkF) in HepaRG cells. In the same cell model, the AhR agonists reduced the expression of glucose metabolism genes (PCK1, G6PC and PDK4), and they up-regulated levels of glucosylceramides, together with a concomitant induction of expression of UGCG, glucosylceramide synthesis enzyme. Finally, both BaP and BkF were found to induce expression of early stress and genotoxicity markers: ATF3, EGR1, GDF15, CDKN1A/p21, and GADD45A mRNAs, while BaP alone increased levels of IL-6 mRNA. Overall, whereas low-molecular-weight PAHs exerted significant effects on nuclear receptors (with CYP2B6 induction observed already at nanomolar concentrations), the AhR activation by 4-ring and 5-ring PAHs appeared to be a key mechanism underlying their impact on nuclear receptor signaling, endogenous metabolism and induction of early stress and genotoxicity markers.},
note = {Place: Netherlands},
keywords = {*Polycyclic Aromatic Hydrocarbons/toxicity, Aryl Hydrocarbon/genetics/metabolism, Benzo(a)pyrene, Cellular stress response, Cytoplasmic and Nuclear/genetics, Energy Metabolism, Humans, Nuclear receptors, Polycyclic aromatic hydrocarbons, Receptors, Signal Transduction, Sphingolipids, Xenobiotics},
pubstate = {published},
tppubtype = {article}
}
Vázquez-Gómez, Gerardo; Karasová, Martina; Tylichová, Zuzana; Kabátková, Markéta; Hampl, Aleš; Matthews, Jason; Neča, Jiří; Ciganek, Miroslav; Machala, Miroslav; Vondráček, Jan
Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Journal Article
In: Cells, vol. 11, no. 4, 2022, ISSN: 2073-4409, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Environmental Pollutants/toxicity, *Inflammation/pathology, *NF-kappa B/metabolism, *Receptors, A549 Cells, AhR, alveolar epithelial type II cells, Aryl Hydrocarbon/metabolism, cytokines, Humans, Inflammation, NF-κB, prostaglandins
@article{vazquez-gomez_aryl_2022,
title = {Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling.},
author = {Gerardo Vázquez-Gómez and Martina Karasová and Zuzana Tylichová and Markéta Kabátková and Aleš Hampl and Jason Matthews and Jiří Neča and Miroslav Ciganek and Miroslav Machala and Jan Vondráček},
doi = {10.3390/cells11040707},
issn = {2073-4409},
year = {2022},
date = {2022-02-01},
journal = {Cells},
volume = {11},
number = {4},
abstract = {Apart from its role in the metabolism of carcinogens, the aryl hydrocarbon receptor (AhR) has been suggested to be involved in the control of inflammatory responses within the respiratory tract. However, the mechanisms responsible for this are only partially known. In this study, we used A549 cell line, as a human model of lung alveolar type II (ATII)-like cells, to study the functional role of the AhR in control of inflammatory responses. Using IL-1β as an inflammation inducer, we found that the induction of cyclooxygenase-2 and secretion of prostaglandins, as well as expression and release of pro-inflammatory cytokines, were significantly higher in the AhR-deficient A549 cells. This was linked with an increased nuclear factor-κB (NF-κB) activity, and significantly enhanced phosphorylation of its regulators, IKKα/β, and their target IκBα, in the AhR-deficient A549 cells. In line with this, when we mimicked the exposure to a complex mixture of airborne pollutants, using an organic extract of reference diesel exhaust particle mixture, an exacerbated inflammatory response was observed in the AhR-deficient cells, as compared with wild-type A549 cells. Together, the present results indicate that the AhR may act as a negative regulator of the inflammatory response in the A549 model, via a direct modulation of NF-κB signaling. Its role(s) in the control of inflammation within the lung alveoli exposed to airborne pollutants, especially those which simultaneously activate the AhR, thus deserve further attention.},
note = {Place: Switzerland},
keywords = {*Environmental Pollutants/toxicity, *Inflammation/pathology, *NF-kappa B/metabolism, *Receptors, A549 Cells, AhR, alveolar epithelial type II cells, Aryl Hydrocarbon/metabolism, cytokines, Humans, Inflammation, NF-κB, prostaglandins},
pubstate = {published},
tppubtype = {article}
}
Krkoška, Martin; Nekvindová, Jana; Nevědělová, Kateřina; Zubáňová, Veronika; Radová, Lenka; Vondráček, Jan; Herůdková, Jarmila; Slabý, Ondřej; Kiss, Igor; Bohovicová, Lucia; Fabian, Pavel; Tylichová, Zuzana; Kala, Zdeněk; Kysela, Petr; Ostřížková, Lenka; Palička, Vladimír; Vaculová, Alena Hyršlová
Role of miR-653 and miR-29c in downregulation of CYP1A2 expression in hepatocellular carcinoma. Journal Article
In: Pharmacological reports : PR, vol. 74, no. 1, pp. 148–158, 2022, ISSN: 2299-5684 1734-1140, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Carcinoma, *Liver Neoplasms/genetics/metabolism, AhR, Biotransformation, Cell Line, CYP1A2, Cytochrome P-450 CYP1A2/*metabolism, Down-Regulation, Gene Expression Regulation, Hepatocellular carcinoma, Hepatocellular/genetics/metabolism, Hepatocytes/metabolism, Humans, MicroRNA, MicroRNAs/*metabolism, Neoplastic, Tumor, Xenobiotics/metabolism
@article{krkoska_role_2022,
title = {Role of miR-653 and miR-29c in downregulation of CYP1A2 expression in hepatocellular carcinoma.},
author = {Martin Krkoška and Jana Nekvindová and Kateřina Nevědělová and Veronika Zubáňová and Lenka Radová and Jan Vondráček and Jarmila Herůdková and Ondřej Slabý and Igor Kiss and Lucia Bohovicová and Pavel Fabian and Zuzana Tylichová and Zdeněk Kala and Petr Kysela and Lenka Ostřížková and Vladimír Palička and Alena Hyršlová Vaculová},
doi = {10.1007/s43440-021-00338-9},
issn = {2299-5684 1734-1140},
year = {2022},
date = {2022-02-01},
journal = {Pharmacological reports : PR},
volume = {74},
number = {1},
pages = {148–158},
abstract = {BACKGROUND: Hepatocellular carcinoma (HCC) is a major contributor to the worldwide cancer burden. Recent studies on HCC have demonstrated dramatic alterations in expression of several cytochrome P450 (CYP) family members that play a crucial role in biotransformation of many drugs and other xenobiotics; however, the mechanisms responsible for their deregulation remain unclear. METHODS: We investigated a potential involvement of miRNAs in downregulation of expression of CYPs observed in HCC tumors. We compared miRNA expression profiles (TaqMan Array Human MicroRNA v3.0 TLDA qPCR) between HCC human patient tumors with strong (CYP-) and weak/no (CYP+) downregulation of drug-metabolizing CYPs. The role of significantly deregulated miRNAs in modulation of expression of the CYPs and associated xenobiotic receptors was then investigated in human liver HepaRG cells transfected with relevant miRNA mimics or inhibitors. RESULTS: We identified five differentially expressed miRNAs in CYP- versus CYP+ tumors, namely miR-29c, miR-125b1, miR-505, miR-653 and miR-675. The two most-upregulated miRNAs found in CYP- tumor samples, miR-29c and miR-653, were found to act as efficient suppressors of CYP1A2 or AHR expression. CONCLUSIONS: Our results revealed a novel role of miR-653 and miR-29c in regulation of expresion of CYPs involved in crucial biotransformation processes in liver, which are often deregulated during liver cancer progression.},
note = {Place: Switzerland},
keywords = {*Carcinoma, *Liver Neoplasms/genetics/metabolism, AhR, Biotransformation, Cell Line, CYP1A2, Cytochrome P-450 CYP1A2/*metabolism, Down-Regulation, Gene Expression Regulation, Hepatocellular carcinoma, Hepatocellular/genetics/metabolism, Hepatocytes/metabolism, Humans, MicroRNA, MicroRNAs/*metabolism, Neoplastic, Tumor, Xenobiotics/metabolism},
pubstate = {published},
tppubtype = {article}
}
2021
Krkoška, Martin; Svobodová, Jana; Kabátková, Markéta; Zapletal, Ondřej; Vaculová, Alena Hyršlová; Nekvindová, Jana; Vondráček, Jan
In: Toxicology, vol. 461, pp. 152897, 2021, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: AhR, Cancer cells, Cell Line, Cell Proliferation, Cell Proliferation/*physiology, Cell Survival/physiology, Colonic Neoplasms/genetics/*pathology, CYP1 enzymes, Cytochrome P-450 CYP1A1/biosynthesis/*genetics, E1A-Associated p300 Protein/metabolism, Enzyme Induction/physiology, Gene Expression Regulation, HCT116 Cells, Hippo Signaling Pathway/physiology, Humans, Liver/*pathology, Neoplastic, p300, Signal Transduction/physiology, Tumor, Wnt Signaling Pathway/physiology, β-Catenin signaling
@article{krkoska_deregulation_2021,
title = {Deregulation of signaling pathways controlling cell survival and proliferation in cancer cells alters induction of cytochrome P450 family 1 enzymes.},
author = {Martin Krkoška and Jana Svobodová and Markéta Kabátková and Ondřej Zapletal and Alena Hyršlová Vaculová and Jana Nekvindová and Jan Vondráček},
doi = {10.1016/j.tox.2021.152897},
issn = {1879-3185 0300-483X},
year = {2021},
date = {2021-09-01},
journal = {Toxicology},
volume = {461},
pages = {152897},
abstract = {Cytochrome P450 family 1 (CYP1) enzymes contribute both to metabolism of xenobiotics and to the control of endogenous levels of ligands of the aryl hydrocarbon receptor (AhR). Their activities, similar to other CYPs, can be altered in tumor tissues. Here, we examined a possible role of proliferative/survival pathways signaling, which is often deregulated in tumor cells, and possible links with p300 histone acetyltransferase (a transcriptional co-activator) in the control of CYP1 expression, focusing particularly on CYP1A1. Using cell models derived from human liver, we observed that the induction of CYP1A1 expression, as well as other CYP1 enzymes, was reduced in exponentially growing cells, as compared with their non-dividing counterparts. The siRNA-mediated inhibition of proliferation/pro-survival signaling pathway effectors (such as β-catenin and/or Hippo pathway effectors YAP/TAZ) increased the AhR ligand-induced CYP1A1 mRNA levels in liver HepaRG cells, and/or in colon carcinoma HCT-116 cells. The activation of proliferative Wnt/β-catenin signaling in HCT-116 cells reduced both the induction of CYP1 enzymes and the binding of p300 to the promoter of CYP1A1 or CYP1B1 genes. These results seem to indicate that aberrant proliferative signaling in tumor cells could suppress induction of CYP1A1 (or other CYP1 enzymes) via competition for p300 binding. This mechanism could be involved in modulation of the metabolism of both endogenous and exogenous substrates of CYP1A1 (and other CYP1 enzymes), with possible further consequences for alterations of the AhR signaling in tumor cells, or additional functional roles of CYP1 enzymes.},
note = {Place: Ireland},
keywords = {AhR, Cancer cells, Cell Line, Cell Proliferation, Cell Proliferation/*physiology, Cell Survival/physiology, Colonic Neoplasms/genetics/*pathology, CYP1 enzymes, Cytochrome P-450 CYP1A1/biosynthesis/*genetics, E1A-Associated p300 Protein/metabolism, Enzyme Induction/physiology, Gene Expression Regulation, HCT116 Cells, Hippo Signaling Pathway/physiology, Humans, Liver/*pathology, Neoplastic, p300, Signal Transduction/physiology, Tumor, Wnt Signaling Pathway/physiology, β-Catenin signaling},
pubstate = {published},
tppubtype = {article}
}
Machala, Miroslav; Slavík, Josef; Kováč, Ondrej; Procházková, Jiřina; Pěnčíková, Kateřina; Pařenicová, Martina; Straková, Nicol; Kotouček, Jan; Kulich, Pavel; Mollerup, Steen; Vondráček, Jan; Hýžďalová, Martina
In: International journal of molecular sciences, vol. 22, no. 17, 2021, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Cell Transformation, Benzo(a)pyrene/toxicity, Bronchi/cytology, Carcinogens/toxicity, Cell Line, eicosanoids, exosomes, Exosomes/*metabolism, glycosphingolipid, Humans, in vitro cell transformation, Neoplastic, Respiratory Mucosa/drug effects/*metabolism, sphingolipid, Sphingolipids/*metabolism
@article{machala_changes_2021,
title = {Changes in Sphingolipid Profile of Benzo[a]pyrene-Transformed Human Bronchial Epithelial Cells Are Reflected in the Altered Composition of Sphingolipids in Their Exosomes.},
author = {Miroslav Machala and Josef Slavík and Ondrej Kováč and Jiřina Procházková and Kateřina Pěnčíková and Martina Pařenicová and Nicol Straková and Jan Kotouček and Pavel Kulich and Steen Mollerup and Jan Vondráček and Martina Hýžďalová},
doi = {10.3390/ijms22179195},
issn = {1422-0067},
year = {2021},
date = {2021-08-01},
journal = {International journal of molecular sciences},
volume = {22},
number = {17},
abstract = {Sphingolipids (SLs), glycosphingolipids (GSLs), and eicosanoids are bioactive lipids, which play important roles in the etiology of various diseases, including cancer. However, their content and roles in cancer cells, and in particular in the exosomes derived from tumor cells, remain insufficiently characterized. In this study, we evaluated alterations of SL and GSL levels in transformed cells and their exosomes, using comparative HPLC-MS/MS analysis of parental human bronchial epithelial cells HBEC-12KT and their derivative, benzo[a]pyrene-transformed HBEC-12KT-B1 cells with the acquired mesenchymal phenotype. We examined in parallel SL/GSL contents in the exosomes released from both cell lines. We found significant alterations of the SL/GSL profile in the transformed cell line, which corresponded well with alterations of the SL/GSL profile in exosomes derived from these cells. This suggested that a majority of SLs and GSLs were transported by exosomes in the same relative pattern as in the cells of origin. The only exceptions included decreased contents of sphingosin, sphingosin-1-phosphate, and lactosylceramide in exosomes derived from the transformed cells, as compared with the exosomes derived from the parental cell line. Importantly, we found increased levels of ceramide phosphate, globoside Gb3, and ganglioside GD3 in the exosomes derived from the transformed cells. These positive modulators of epithelial-mesenchymal transition and other pro-carcinogenic processes might thus also contribute to cancer progression in recipient cells. In addition, the transformed HBEC-12KT-B1 cells also produced increased amounts of eicosanoids, in particular prostaglandin E2. Taken together, the exosomes derived from the transformed cells with specifically upregulated SL and GSL species, and increased levels of eicosanoids, might contribute to changes within the cancer microenvironment and in recipient cells, which could in turn participate in cancer development. Future studies should address specific roles of individual SL and GSL species identified in the present study.},
note = {Place: Switzerland},
keywords = {*Cell Transformation, Benzo(a)pyrene/toxicity, Bronchi/cytology, Carcinogens/toxicity, Cell Line, eicosanoids, exosomes, Exosomes/*metabolism, glycosphingolipid, Humans, in vitro cell transformation, Neoplastic, Respiratory Mucosa/drug effects/*metabolism, sphingolipid, Sphingolipids/*metabolism},
pubstate = {published},
tppubtype = {article}
}
Hofmanová, Jiřina; Slavík, Josef; Ciganek, Miroslav; Ovesná, Petra; Tylichová, Zuzana; Karasová, Martina; Zapletal, Ondřej; Straková, Nicol; Procházková, Jiřina; Bouchal, Jan; Kolář, Zdeněk; Ehrmann, Jiří; Levková, Monika; Hušková, Zlatka; Skalický, Pavel; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
Complex Alterations of Fatty Acid Metabolism and Phospholipidome Uncovered in Isolated Colon Cancer Epithelial Cells. Journal Article
In: International journal of molecular sciences, vol. 22, no. 13, 2021, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Gene Expression Regulation, *Lipid Metabolism, Adenocarcinoma/enzymology/genetics/*metabolism, Aged, Colonic Neoplasms/enzymology/genetics/*metabolism, colorectal carcinoma, desaturation, EpCAM, Epithelial Cells, Epithelial Cells/enzymology/metabolism, Fatty Acid Desaturases/genetics/metabolism, Fatty Acid Elongases/genetics/metabolism, Fatty Acid Synthases/genetics/metabolism, fatty acid synthesis, Fatty Acids/*metabolism, Female, Humans, lipidomics, Lipogenesis, lysophospholipids, Male, Neoplastic, Phospholipids, Phospholipids/*metabolism, Stearoyl-CoA Desaturase/genetics/metabolism
@article{hofmanova_complex_2021,
title = {Complex Alterations of Fatty Acid Metabolism and Phospholipidome Uncovered in Isolated Colon Cancer Epithelial Cells.},
author = {Jiřina Hofmanová and Josef Slavík and Miroslav Ciganek and Petra Ovesná and Zuzana Tylichová and Martina Karasová and Ondřej Zapletal and Nicol Straková and Jiřina Procházková and Jan Bouchal and Zdeněk Kolář and Jiří Ehrmann and Monika Levková and Zlatka Hušková and Pavel Skalický and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.3390/ijms22136650},
issn = {1422-0067},
year = {2021},
date = {2021-06-01},
journal = {International journal of molecular sciences},
volume = {22},
number = {13},
abstract = {The development of colon cancer, one of the most common malignancies, is accompanied with numerous lipid alterations. However, analyses of whole tumor samples may not always provide an accurate description of specific changes occurring directly in tumor epithelial cells. Here, we analyzed in detail the phospholipid (PL), lysophospholipid (lysoPL), and fatty acid (FA) profiles of purified EpCAM(+) cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients. We found that a number of FAs increased significantly in isolated tumor cells, which also included a number of long polyunsaturated FAs. Higher levels of FAs were associated with increased expression of FA synthesis genes, as well as with altered expression of enzymes involved in FA elongation and desaturation, including particularly fatty acid synthase, stearoyl-CoA desaturase, fatty acid desaturase 2 and ELOVL5 fatty acid elongase 5 We identified significant changes in ratios of specific lysoPLs and corresponding PLs. A number of lysophosphatidylcholine and lysophosphatidylethanolamine species, containing long-chain and very-long chain FAs, often with high numbers of double bonds, were significantly upregulated in tumor cells. Increased de novo synthesis of very long-chain FAs, or, altered uptake or incorporation of these FAs into specific lysoPLs in tumor cells, may thus contribute to reprogramming of cellular phospholipidome and membrane alterations observed in colon cancer.},
note = {Place: Switzerland},
keywords = {*Gene Expression Regulation, *Lipid Metabolism, Adenocarcinoma/enzymology/genetics/*metabolism, Aged, Colonic Neoplasms/enzymology/genetics/*metabolism, colorectal carcinoma, desaturation, EpCAM, Epithelial Cells, Epithelial Cells/enzymology/metabolism, Fatty Acid Desaturases/genetics/metabolism, Fatty Acid Elongases/genetics/metabolism, Fatty Acid Synthases/genetics/metabolism, fatty acid synthesis, Fatty Acids/*metabolism, Female, Humans, lipidomics, Lipogenesis, lysophospholipids, Male, Neoplastic, Phospholipids, Phospholipids/*metabolism, Stearoyl-CoA Desaturase/genetics/metabolism},
pubstate = {published},
tppubtype = {article}
}
Němec, Václav; Maier, Lukáš; Berger, Benedict-Tilman; Chaikuad, Apirat; Drápela, Stanislav; Souček, Karel; Knapp, Stefan; Paruch, Kamil
Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core. Journal Article
In: European journal of medicinal chemistry, vol. 215, pp. 113299, 2021, ISSN: 1768-3254 0223-5234, (Place: France).
Abstract | Links | BibTeX | Tags: 2-b]pyridine, Animals, Carrier Proteins/*antagonists & inhibitors/metabolism, CLK, Crystallography, Furans/chemical synthesis/metabolism/*pharmacology, Furo[3, HIPK, Humans, Inhibitor, Kinase, MCF-7 Cells, Mice, Molecular Structure, MU1210, MU135, MU1787, Protein Binding, Protein Kinase Inhibitors/chemical synthesis/metabolism/*pharmacology, Protein Serine-Threonine Kinases/*antagonists & inhibitors/metabolism, Pyridines/chemical synthesis/metabolism/*pharmacology, Structure-Activity Relationship, X-Ray
@article{nemec_highly_2021,
title = {Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core.},
author = {Václav Němec and Lukáš Maier and Benedict-Tilman Berger and Apirat Chaikuad and Stanislav Drápela and Karel Souček and Stefan Knapp and Kamil Paruch},
doi = {10.1016/j.ejmech.2021.113299},
issn = {1768-3254 0223-5234},
year = {2021},
date = {2021-04-01},
journal = {European journal of medicinal chemistry},
volume = {215},
pages = {113299},
abstract = {The furo [3,2-b]pyridine motif represents a relatively underexplored central pharmacophore in the area of kinase inhibitors. Herein, we report flexible synthesis of 3,5-disubstituted furo [3,2-b]pyridines that relies on chemoselective couplings of newly prepared 5-chloro-3-iodofuro [3,2-b]pyridine. This methodology allowed efficient second-generation synthesis of the state-of-the-art chemical biology probe for CLK1/2/4 MU1210, and identification of the highly selective inhibitors of HIPKs MU135 and MU1787 which are presented and characterized in this study, including the X-ray crystal structure of MU135 in HIPK2. chemical biology probe.},
note = {Place: France},
keywords = {2-b]pyridine, Animals, Carrier Proteins/*antagonists & inhibitors/metabolism, CLK, Crystallography, Furans/chemical synthesis/metabolism/*pharmacology, Furo[3, HIPK, Humans, Inhibitor, Kinase, MCF-7 Cells, Mice, Molecular Structure, MU1210, MU135, MU1787, Protein Binding, Protein Kinase Inhibitors/chemical synthesis/metabolism/*pharmacology, Protein Serine-Threonine Kinases/*antagonists & inhibitors/metabolism, Pyridines/chemical synthesis/metabolism/*pharmacology, Structure-Activity Relationship, X-Ray},
pubstate = {published},
tppubtype = {article}
}
Mickova, Alena; Kharaishvili, Gvantsa; Kurfurstova, Daniela; Gachechiladze, Mariam; Kral, Milan; Vacek, Ondrej; Pokryvkova, Barbora; Mistrik, Martin; Soucek, Karel; Bouchal, Jan
Skp2 and Slug Are Coexpressed in Aggressive Prostate Cancer and Inhibited by Neddylation Blockade. Journal Article
In: International journal of molecular sciences, vol. 22, no. 6, 2021, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Protein Processing, Androgen/genetics/metabolism, Antigens, Antineoplastic Agents/pharmacology, Cadherins/genetics/metabolism, CD/genetics/metabolism, Cell Line, Cell Survival/drug effects, Cyclin-Dependent Kinase Inhibitor p27/genetics/metabolism, Cyclopentanes/pharmacology, Docetaxel/pharmacology, Epithelial-Mesenchymal Transition/genetics, Gene Expression Regulation, Humans, Immunohistochemistry, Lymphatic Metastasis, Male, multiplex, NEDD8 Protein/*genetics/metabolism, neddylation, Neoplasm Grading, Neoplastic, PC-3 Cells, Post-Translational, Prostate cancer, Prostate/metabolism/pathology, Prostatic Neoplasms/*genetics/metabolism/pathology, Pyrimidines/pharmacology, Receptors, RNA, S-Phase Kinase-Associated Proteins/antagonists & inhibitors/*genetics/metabolism, Skp2 (S-phase kinase-associated protein 2), Slug, Small Interfering/genetics/metabolism, Snail Family Transcription Factors/*genetics/metabolism, Tumor
@article{mickova_skp2_2021,
title = {Skp2 and Slug Are Coexpressed in Aggressive Prostate Cancer and Inhibited by Neddylation Blockade.},
author = {Alena Mickova and Gvantsa Kharaishvili and Daniela Kurfurstova and Mariam Gachechiladze and Milan Kral and Ondrej Vacek and Barbora Pokryvkova and Martin Mistrik and Karel Soucek and Jan Bouchal},
doi = {10.3390/ijms22062844},
issn = {1422-0067},
year = {2021},
date = {2021-03-01},
journal = {International journal of molecular sciences},
volume = {22},
number = {6},
abstract = {Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men in Western countries, and there is still an urgent need for a better understanding of PCa progression to inspire new treatment strategies. Skp2 is a substrate-recruiting component of the E3 ubiquitin ligase complex, whose activity is regulated through neddylation. Slug is a transcriptional repressor involved in the epithelial-to-mesenchymal transition, which may contribute to therapy resistance. Although Skp2 has previously been associated with a mesenchymal phenotype and prostate cancer progression, the relationship with Slug deserves further elucidation. We have previously shown that a high Gleason score (≥8) is associated with higher Skp2 and lower E-cadherin expression. In this study, significantly increased expression of Skp2, AR, and Slug, along with E-cadherin downregulation, was observed in primary prostate cancer in patients who already had lymph node metastases. Skp2 was slightly correlated with Slug and AR in the whole cohort (Rs 0.32 and 0.37, respectively), which was enhanced for both proteins in patients with high Gleason scores (Rs 0.56 and 0.53, respectively) and, in the case of Slug, also in patients with metastasis to lymph nodes (Rs 0.56). Coexpression of Skp2 and Slug was confirmed in prostate cancer tissues by multiplex immunohistochemistry and confocal microscopy. The same relationship between these two proteins was observed in three sets of prostate epithelial cell lines (PC3, DU145, and E2) and their mesenchymal counterparts. Chemical inhibition of Skp2, but not RNA interference, modestly decreased Slug protein in PC3 and its docetaxel-resistant subline PC3 DR12. Importantly, chemical inhibition of Skp2 by MLN4924 upregulated p27 and decreased Slug expression in PC3, PC3 DR12, and LAPC4 cells. Novel treatment strategies targeting Skp2 and Slug by the neddylation blockade may be promising in advanced prostate cancer, as recently documented for other aggressive solid tumors.},
note = {Place: Switzerland},
keywords = {*Protein Processing, Androgen/genetics/metabolism, Antigens, Antineoplastic Agents/pharmacology, Cadherins/genetics/metabolism, CD/genetics/metabolism, Cell Line, Cell Survival/drug effects, Cyclin-Dependent Kinase Inhibitor p27/genetics/metabolism, Cyclopentanes/pharmacology, Docetaxel/pharmacology, Epithelial-Mesenchymal Transition/genetics, Gene Expression Regulation, Humans, Immunohistochemistry, Lymphatic Metastasis, Male, multiplex, NEDD8 Protein/*genetics/metabolism, neddylation, Neoplasm Grading, Neoplastic, PC-3 Cells, Post-Translational, Prostate cancer, Prostate/metabolism/pathology, Prostatic Neoplasms/*genetics/metabolism/pathology, Pyrimidines/pharmacology, Receptors, RNA, S-Phase Kinase-Associated Proteins/antagonists & inhibitors/*genetics/metabolism, Skp2 (S-phase kinase-associated protein 2), Slug, Small Interfering/genetics/metabolism, Snail Family Transcription Factors/*genetics/metabolism, Tumor},
pubstate = {published},
tppubtype = {article}
}
Hýžďalová, Martina; Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Vacek, Ondřej; Fedr, Radek; Andrysík, Zdeněk; Hrubá, Eva; Líbalová, Helena; Kléma, Jiří; Topinka, Jan; Mašek, Josef; Souček, Karel; Vondráček, Jan; Machala, Miroslav
In: Chemosphere, vol. 263, pp. 128126, 2021, ISSN: 1879-1298 0045-6535, (Place: England).
Abstract | Links | BibTeX | Tags: *Carcinoma, *Lung Neoplasms/genetics, Aryl Hydrocarbon/genetics, BaP, Benzo(a)pyrene/toxicity, Cell Proliferation, EMT, Epithelial Cells, Humans, Lung, Lung carcinoma, Phenotype, Receptors, TCDD, Tumor progression
@article{hyzdalova_prolonged_2021,
title = {A prolonged exposure of human lung carcinoma epithelial cells to benzo[a]pyrene induces p21-dependent epithelial-to-mesenchymal transition (EMT)-like phenotype.},
author = {Martina Hýžďalová and Jiřina Procházková and Simona Strapáčová and Lucie Svržková and Ondřej Vacek and Radek Fedr and Zdeněk Andrysík and Eva Hrubá and Helena Líbalová and Jiří Kléma and Jan Topinka and Josef Mašek and Karel Souček and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.chemosphere.2020.128126},
issn = {1879-1298 0045-6535},
year = {2021},
date = {2021-01-01},
journal = {Chemosphere},
volume = {263},
pages = {128126},
abstract = {Deciphering the role of the aryl hydrocarbon receptor (AhR) in lung cancer cells may help us to better understand the role of toxic AhR ligands in lung carcinogenesis, including cancer progression. We employed human lung carcinoma A549 cells to investigate their fate after continuous two-week exposure to model AhR agonists, genotoxic benzo[a]pyrene (BaP; 1 μM) and non-genotoxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 nM). While TCDD increased proliferative rate of A549 cells, exposure to BaP decreased cell proliferation and induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which was associated with enhanced cell migration, invasion, and altered cell morphology. Although TCDD also suppressed expression of E-cadherin and activated some genes linked to EMT, it did not induce the EMT-like phenotype. The results of transcriptomic analysis, and the opposite effects of BaP and TCDD on cell proliferation, indicated that a delay in cell cycle progression, together with a slight increase of senescence (when coupled with AhR activation), favors the induction of EMT-like phenotype. The shift towards EMT-like phenotype observed after simultaneous treatment with TCDD and mitomycin C (an inhibitor of cell proliferation) confirmed the hypothesis. Since BaP decreased cell proliferative rate via induction of p21 expression, we generated the A549 cell model with reduced p21 expression and exposed it to BaP for two weeks. The p21 knockdown suppressed the BaP-mediated EMT-like phenotype in A549 cells, thus confirming that a delayed cell cycle progression, together with p21-dependent induction of senescence-related chemokine CCL2, may contribute to induction of EMT-like cell phenotype in lung cells exposed to genotoxic AhR ligands.},
note = {Place: England},
keywords = {*Carcinoma, *Lung Neoplasms/genetics, Aryl Hydrocarbon/genetics, BaP, Benzo(a)pyrene/toxicity, Cell Proliferation, EMT, Epithelial Cells, Humans, Lung, Lung carcinoma, Phenotype, Receptors, TCDD, Tumor progression},
pubstate = {published},
tppubtype = {article}
}
Vondráček, Jan; Machala, Miroslav
The Role of Metabolism in Toxicity of Polycyclic Aromatic Hydrocarbons and their Non-genotoxic Modes of Action. Journal Article
In: Current drug metabolism, vol. 22, no. 8, pp. 584–595, 2021, ISSN: 1875-5453 1389-2002, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Activation, AhR, Animals, Benzo[a]pyrene, Cell Proliferation, Cell Survival, cell-to-cell communication, DNA Damage, Environmental Pollutants/*pharmacokinetics/*toxicity, Humans, Metabolic, Mutagens/*pharmacokinetics/*toxicity, oxidative stress, PAH metabolism., Polycyclic Aromatic Hydrocarbons/*pharmacokinetics/*toxicity
@article{vondracek_role_2021,
title = {The Role of Metabolism in Toxicity of Polycyclic Aromatic Hydrocarbons and their Non-genotoxic Modes of Action.},
author = {Jan Vondráček and Miroslav Machala},
doi = {10.2174/1389200221999201125205725},
issn = {1875-5453 1389-2002},
year = {2021},
date = {2021-01-01},
journal = {Current drug metabolism},
volume = {22},
number = {8},
pages = {584–595},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) represent a class of widely distributed environmental pollutants that have been primarily studied as genotoxic compounds. Their mutagenicity/genotoxicity largely depends on their oxidative metabolism leading to the production of dihydrodiol epoxide metabolites, as well as additional metabolites contributing to oxidative DNA damage, such as PAH quinones. However, both parental PAHs and their metabolites, including PAH quinones or hydroxylated PAHs, have been shown to produce various types of non-genotoxic effects. These include e.g., activation of the aryl hydrocarbon receptor and/or additional nuclear receptors, activation of membrane receptors, including tyrosine kinases and G-protein coupled receptors, or activation of intracellular signaling pathways, such as mitogen-activated protein kinases, Akt kinase and Ca(2+)-dependent signaling. These pathways may, together with the cellular DNA damage responses, modulate cell proliferation, cell survival or cell-to-cell communication, thus contributing to the known carcinogenic effects of PAHs. In the present review, we summarize some of the known non-genotoxic effects of PAHs, focusing primarily on those that have also been shown to be modulated by PAH metabolites. Despite the limitations of the available data, it seems evident that more attention should be paid to the discrimination between the potential non-genotoxic effects of parental PAHs and those of their metabolites. This may provide further insight into the mechanisms of toxicity of this large and diverse group of environmental pollutants.},
note = {Place: Netherlands},
keywords = {Activation, AhR, Animals, Benzo[a]pyrene, Cell Proliferation, Cell Survival, cell-to-cell communication, DNA Damage, Environmental Pollutants/*pharmacokinetics/*toxicity, Humans, Metabolic, Mutagens/*pharmacokinetics/*toxicity, oxidative stress, PAH metabolism., Polycyclic Aromatic Hydrocarbons/*pharmacokinetics/*toxicity},
pubstate = {published},
tppubtype = {article}
}
2020
Vondráček, Jan; Pěnčíková, Kateřina; Ciganek, Miroslav; Pivnička, Jakub; Karasová, Martina; Hýžďalová, Martina; Strapáčová, Simona; Pálková, Lenka; Neča, Jiří; Matthews, Jason; Lom, Michal Vojtíšek; Topinka, Jan; Milcová, Alena; Machala, Miroslav
Environmental six-ring polycyclic aromatic hydrocarbons are potent inducers of the AhR-dependent signaling in human cells. Journal Article
In: Environmental pollution (Barking, Essex : 1987), vol. 266, no. Pt 2, pp. 115125, 2020, ISSN: 1873-6424 0269-7491, (Place: England).
Abstract | Links | BibTeX | Tags: *Polycyclic Aromatic Hydrocarbons, *Receptors, AhR, Anti-estrogenicity, Aryl Hydrocarbon, Carcinogenic PAHs, Genotoxicity, Humans, Lung cell toxicity, Particulate Matter, Signal Transduction, Vehicle Emissions
@article{vondracek_environmental_2020,
title = {Environmental six-ring polycyclic aromatic hydrocarbons are potent inducers of the AhR-dependent signaling in human cells.},
author = {Jan Vondráček and Kateřina Pěnčíková and Miroslav Ciganek and Jakub Pivnička and Martina Karasová and Martina Hýžďalová and Simona Strapáčová and Lenka Pálková and Jiří Neča and Jason Matthews and Michal Vojtíšek Lom and Jan Topinka and Alena Milcová and Miroslav Machala},
doi = {10.1016/j.envpol.2020.115125},
issn = {1873-6424 0269-7491},
year = {2020},
date = {2020-11-01},
journal = {Environmental pollution (Barking, Essex : 1987)},
volume = {266},
number = {Pt 2},
pages = {115125},
abstract = {The toxicities of many environmental polycyclic aromatic hydrocarbons (PAHs), in particular those of high-molecular-weight PAHs (with MW higher than 300), remain poorly characterized. The objective of this study was to evaluate the ability of selected environmentally relevant PAHs with MW 302 (MW302 PAHs) to activate the aryl hydrocarbon receptor (AhR), since this represents a major toxic mode of action of PAHs. A large number of the evaluated compounds exhibited strong AhR-mediated activities, in particular in human models. The studied MW302 PAHs also significantly contributed to the overall calculated AhR activities of complex environmental mixtures, including both defined standard reference materials and collected diesel exhaust particles. The high AhR-mediated activities of representative MW302 PAHs, e.g. naphtho[1,2-k]fluoranthene, corresponded with the modulation of expression of relevant AhR target genes in a human lung cell model, or with the AhR-dependent suppression of cell cycle progression/proliferation in estrogen-sensitive cells. This was in a marked contrast with the limited genotoxicity of the same compound(s). Given the substantial levels of the AhR-activating MW302 PAHs in combustion particles, it seems important to continue to investigate the toxic modes of action of this large group of PAHs associated with airborne particulate matter.},
note = {Place: England},
keywords = {*Polycyclic Aromatic Hydrocarbons, *Receptors, AhR, Anti-estrogenicity, Aryl Hydrocarbon, Carcinogenic PAHs, Genotoxicity, Humans, Lung cell toxicity, Particulate Matter, Signal Transduction, Vehicle Emissions},
pubstate = {published},
tppubtype = {article}
}
Drápela, Stanislav; Khirsariya, Prashant; Weerden, Wytske M.; Fedr, Radek; Suchánková, Tereza; Búzová, Diana; Červený, Jan; Hampl, Aleš; Puhr, Martin; Watson, William R.; Culig, Zoran; Krejčí, Lumír; Paruch, Kamil; Souček, Karel
In: Molecular oncology, vol. 14, no. 10, pp. 2487–2503, 2020, ISSN: 1878-0261 1574-7891, (Place: United States).
Abstract | Links | BibTeX | Tags: *Mitosis/drug effects, Animals, castration-resistant prostate cancer, Cell Death/drug effects, Cell Line, Cell Proliferation/drug effects, Checkpoint Kinase 1, Checkpoint Kinase 1/*antagonists & inhibitors/metabolism, Deoxycytidine/*analogs & derivatives/pharmacology, Docetaxel resistance, Docetaxel/*pharmacology, Drug resistance, gemcitabine, Humans, Male, Mice, mitotic catastrophe, MU380, Neoplasm/*drug effects, Piperidines/chemistry/*pharmacology, Prostatic Neoplasms/*pathology, Pyrazoles/chemistry/*pharmacology, Pyrimidines/chemistry/*pharmacology, S Phase/drug effects, SCID, Tumor, Xenograft Model Antitumor Assays
@article{drapela_chk1_2020,
title = {The CHK1 inhibitor MU380 significantly increases the sensitivity of human docetaxel-resistant prostate cancer cells to gemcitabine through the induction of mitotic catastrophe.},
author = {Stanislav Drápela and Prashant Khirsariya and Wytske M. Weerden and Radek Fedr and Tereza Suchánková and Diana Búzová and Jan Červený and Aleš Hampl and Martin Puhr and William R. Watson and Zoran Culig and Lumír Krejčí and Kamil Paruch and Karel Souček},
doi = {10.1002/1878-0261.12756},
issn = {1878-0261 1574-7891},
year = {2020},
date = {2020-10-01},
journal = {Molecular oncology},
volume = {14},
number = {10},
pages = {2487–2503},
abstract = {As treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa. Synergistic induction of DNA damage with CHK1 inhibition represents a promising therapeutic approach that has been tested in many types of malignancies, but not in chemoresistant mCRPC. Here, we report that such therapeutic approach may be exploited using the synergistic action of the antimetabolite gemcitabine (GEM) and CHK1 inhibitors SCH900776 and MU380 in docetaxel-resistant (DR) mCRPC. Given the results, both CHK1 inhibitors significantly potentiated the sensitivity to GEM in a panel of chemo-naïve and matched DR PCa cell lines under 2D conditions. MU380 exhibited a stronger synergistic effect with GEM than clinical candidate SCH900776. MU380 alone or in combination with GEM significantly reduced spheroid size and increased apoptosis in all patient-derived xenograft 3D cultures, with a higher impact in DR models. Combined treatment induced premature mitosis from G1 phase resulting in the mitotic catastrophe as a prestage of apoptosis. Finally, treatment by MU380 alone, or in combination with GEM, significantly inhibited tumor growth of both PC339-DOC and PC346C-DOC xenograft models in mice. Taken together, our data suggest that metabolically robust and selective CHK1 inhibitor MU380 can bypass docetaxel resistance and improve the effectiveness of GEM in DR mCRPC models. This approach might allow for dose reduction of GEM and thereby minimize undesired toxicity and may represent a therapeutic option for patients with incurable DR mCRPC.},
note = {Place: United States},
keywords = {*Mitosis/drug effects, Animals, castration-resistant prostate cancer, Cell Death/drug effects, Cell Line, Cell Proliferation/drug effects, Checkpoint Kinase 1, Checkpoint Kinase 1/*antagonists & inhibitors/metabolism, Deoxycytidine/*analogs & derivatives/pharmacology, Docetaxel resistance, Docetaxel/*pharmacology, Drug resistance, gemcitabine, Humans, Male, Mice, mitotic catastrophe, MU380, Neoplasm/*drug effects, Piperidines/chemistry/*pharmacology, Prostatic Neoplasms/*pathology, Pyrazoles/chemistry/*pharmacology, Pyrimidines/chemistry/*pharmacology, S Phase/drug effects, SCID, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jiřina; Slavík, Josef; Bouchal, Jan; Levková, Monika; Hušková, Zlata; Ehrmann, Jiří; Ovesná, Petra; Kolář, Zdeněk; Skalický, Pavel; Straková, Nicol; Zapletal, Ondřej; Kozubík, Alois; Hofmanová, Jiřina; Vondráček, Jan; Machala, Miroslav
Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors. Journal Article
In: Biochimica et biophysica acta. Molecular and cell biology of lipids, vol. 1865, no. 9, pp. 158742, 2020, ISSN: 1879-2618 1388-1981, (Place: Netherlands).
Links | BibTeX | Tags: 80 and over, Adult, Aged, B4GALTs, Colon adenocarcinoma, Colorectal Neoplasms/*metabolism, EPCAM-positive cells, Epithelial Cell Adhesion Molecule/*metabolism, Female, Galactosyltransferases/genetics, Humans, Lactosylceramide, Male, Middle Aged, Sphingolipid metabolism, Sphingolipids/*metabolism
@article{prochazkova_specific_2020,
title = {Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors.},
author = {Jiřina Procházková and Josef Slavík and Jan Bouchal and Monika Levková and Zlata Hušková and Jiří Ehrmann and Petra Ovesná and Zdeněk Kolář and Pavel Skalický and Nicol Straková and Ondřej Zapletal and Alois Kozubík and Jiřina Hofmanová and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.bbalip.2020.158742},
issn = {1879-2618 1388-1981},
year = {2020},
date = {2020-09-01},
journal = {Biochimica et biophysica acta. Molecular and cell biology of lipids},
volume = {1865},
number = {9},
pages = {158742},
note = {Place: Netherlands},
keywords = {80 and over, Adult, Aged, B4GALTs, Colon adenocarcinoma, Colorectal Neoplasms/*metabolism, EPCAM-positive cells, Epithelial Cell Adhesion Molecule/*metabolism, Female, Galactosyltransferases/genetics, Humans, Lactosylceramide, Male, Middle Aged, Sphingolipid metabolism, Sphingolipids/*metabolism},
pubstate = {published},
tppubtype = {article}
}
Remšík, Ján; Pícková, Markéta; Vacek, Ondřej; Fedr, Radek; Binó, Lucia; Hampl, Aleš; Souček, Karel
TGF-β regulates Sca-1 expression and plasticity of pre-neoplastic mammary epithelial stem cells. Journal Article
In: Scientific reports, vol. 10, no. 1, pp. 11396, 2020, ISSN: 2045-2322, (Place: England).
Abstract | Links | BibTeX | Tags: Animal/pathology, Animals, Ataxin-1/*metabolism, Breast Neoplasms/genetics/*pathology, Cell Line, Cell Plasticity/genetics, Epithelial Cells/pathology, Epithelial-Mesenchymal Transition/genetics, ErbB-2/genetics, Experimental/genetics/*pathology, Female, Gene Expression Regulation, Humans, Mammary Glands, Mammary Neoplasms, Mice, Neoplastic, Neoplastic Stem Cells/*pathology, Receptor, Recombinant Proteins/genetics/metabolism, Signal Transduction/genetics, Transforming Growth Factor beta/genetics/*metabolism, Tumor/transplantation
@article{remsik_tgf-_2020,
title = {TGF-β regulates Sca-1 expression and plasticity of pre-neoplastic mammary epithelial stem cells.},
author = {Ján Remšík and Markéta Pícková and Ondřej Vacek and Radek Fedr and Lucia Binó and Aleš Hampl and Karel Souček},
doi = {10.1038/s41598-020-67827-4},
issn = {2045-2322},
year = {2020},
date = {2020-07-01},
journal = {Scientific reports},
volume = {10},
number = {1},
pages = {11396},
abstract = {The epithelial-mesenchymal plasticity, in tight association with stemness, contributes to the mammary gland homeostasis, evolution of early neoplastic lesions and cancer dissemination. Focused on cell surfaceome, we used mouse models of pre-neoplastic mammary epithelial and cancer stem cells to reveal the connection between cell surface markers and distinct cell phenotypes. We mechanistically dissected the TGF-β family-driven regulation of Sca-1, one of the most commonly used adult stem cell markers. We further provided evidence that TGF-β disrupts the lineage commitment and promotes the accumulation of tumor-initiating cells in pre-neoplastic cells.},
note = {Place: England},
keywords = {Animal/pathology, Animals, Ataxin-1/*metabolism, Breast Neoplasms/genetics/*pathology, Cell Line, Cell Plasticity/genetics, Epithelial Cells/pathology, Epithelial-Mesenchymal Transition/genetics, ErbB-2/genetics, Experimental/genetics/*pathology, Female, Gene Expression Regulation, Humans, Mammary Glands, Mammary Neoplasms, Mice, Neoplastic, Neoplastic Stem Cells/*pathology, Receptor, Recombinant Proteins/genetics/metabolism, Signal Transduction/genetics, Transforming Growth Factor beta/genetics/*metabolism, Tumor/transplantation},
pubstate = {published},
tppubtype = {article}
}
Nekvindova, Jana; Mrkvicova, Alena; Zubanova, Veronika; Vaculova, Alena Hyrslova; Anzenbacher, Pavel; Soucek, Pavel; Radova, Lenka; Slaby, Ondrej; Kiss, Igor; Vondracek, Jan; Spicakova, Alena; Bohovicova, Lucia; Fabian, Pavel; Kala, Zdenek; Palicka, Vladimir
Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450. Journal Article
In: Biochemical pharmacology, vol. 177, pp. 113912, 2020, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Gene Expression Regulation, *Transcriptome, Adult, Aged, Carcinoma, Cohort Studies, CYP, Cytochrome P-450 Enzyme System/*genetics, Cytochrome P450, Cytoplasmic and Nuclear/genetics/metabolism, Drug metabolism, Enzymologic, Female, Gene Expression, Gene Expression Profiling, Hepatocellular carcinoma, Hepatocellular/*enzymology/pathology, Hepatocytes/metabolism, Humans, Inactivation, Liver Neoplasms/*enzymology/pathology, Liver/metabolism, Male, Metabolic/genetics, Middle Aged, Neoplasm Grading, Non-coding RNA, Receptors
@article{nekvindova_hepatocellular_2020,
title = {Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450.},
author = {Jana Nekvindova and Alena Mrkvicova and Veronika Zubanova and Alena Hyrslova Vaculova and Pavel Anzenbacher and Pavel Soucek and Lenka Radova and Ondrej Slaby and Igor Kiss and Jan Vondracek and Alena Spicakova and Lucia Bohovicova and Pavel Fabian and Zdenek Kala and Vladimir Palicka},
doi = {10.1016/j.bcp.2020.113912},
issn = {1873-2968 0006-2952},
year = {2020},
date = {2020-07-01},
journal = {Biochemical pharmacology},
volume = {177},
pages = {113912},
abstract = {Hepatocellular carcinoma (HCC) remains a highly prevalent and deadly disease, being among the top causes of cancer-related deaths worldwide. Despite the fact that the liver is the major site of biotransformation, studies on drug metabolizing enzymes in HCC are scarce. It is known that malignant transformation of hepatocytes leads to a significant alteration of their metabolic functions and overall deregulation of gene expression. Advanced stages of the disease are thus frequently associated with liver failure, and severe alteration of drug metabolism. However, the impact of dysregulation of metabolic enzymes on therapeutic efficacy and toxicity in HCC patients is largely unknown. Here we demonstrate a significant down-regulation in European Caucasian patients of cytochromes P450 (CYPs), the major xenobiotic-metabolizing enzymes, in HCC tumour samples as compared to their surrounding non-cancerous (reference) tissue. Moreover, we report for the first time the association of the unique CYP profiles with specific transcriptome changes, and interesting correlations with expression levels of nuclear receptors and with the histological grade of the tumours. Integrated analysis has suggested certain co-expression profiles of CYPs with lncRNAs that need to be further characterized. Patients with large tumours with down-regulated CYPs could be more vulnerable to drug toxicity; on the other hand, such tumours would eliminate drugs more slowly and should be more sensitive to pharmacotherapy (except in the case of pro-drugs where activation is necessary).},
note = {Place: England},
keywords = {*Gene Expression Regulation, *Transcriptome, Adult, Aged, Carcinoma, Cohort Studies, CYP, Cytochrome P-450 Enzyme System/*genetics, Cytochrome P450, Cytoplasmic and Nuclear/genetics/metabolism, Drug metabolism, Enzymologic, Female, Gene Expression, Gene Expression Profiling, Hepatocellular carcinoma, Hepatocellular/*enzymology/pathology, Hepatocytes/metabolism, Humans, Inactivation, Liver Neoplasms/*enzymology/pathology, Liver/metabolism, Male, Metabolic/genetics, Middle Aged, Neoplasm Grading, Non-coding RNA, Receptors},
pubstate = {published},
tppubtype = {article}
}
Kauerová, Tereza; Goněc, Tomáš; Jampílek, Josef; Hafner, Susanne; Gaiser, Ann-Kathrin; Syrovets, Tatiana; Fedr, Radek; Souček, Karel; Kollar, Peter
Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis. Journal Article
In: International journal of molecular sciences, vol. 21, no. 10, 2020, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: Anilides/chemistry/*pharmacology, Antineoplastic Agents/chemistry/pharmacology, antiproliferative effect, Apoptosis, Apoptosis/*drug effects, Cell Cycle, Cell Cycle/drug effects, Cell Proliferation/*drug effects, Cell Survival/drug effects, Humans, hydroxynaphthalene carboxamides, MCF-7 Cells, Membrane Potential, Mitochondria/*drug effects/metabolism, Mitochondrial/drug effects, Molecular Structure, Naphthols/*chemistry, Reactive Oxygen Species/metabolism, salicylanilides, Salicylanilides/chemistry/pharmacology, Structure-Activity Relationship, Superoxides/metabolism, THP-1 Cells
@article{kauerova_ring-substituted_2020,
title = {Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis.},
author = {Tereza Kauerová and Tomáš Goněc and Josef Jampílek and Susanne Hafner and Ann-Kathrin Gaiser and Tatiana Syrovets and Radek Fedr and Karel Souček and Peter Kollar},
doi = {10.3390/ijms21103416},
issn = {1422-0067},
year = {2020},
date = {2020-05-01},
journal = {International journal of molecular sciences},
volume = {21},
number = {10},
abstract = {Ring-substituted 1-hydroxynaphthalene-2-carboxanilides were previously investigated for their antimycobacterial properties. In our study, we have shown their antiproliferative and cell death-inducing effects in cancer cell lines. Cell proliferation and viability were assessed by WST-1 assay and a dye exclusion test, respectively. Cell cycle distribution, phosphatidylserine externalization, levels of reactive oxygen or nitrogen species (RONS), mitochondrial membrane depolarization, and release of cytochrome c were estimated by flow cytometry. Levels of regulatory proteins were determined by Western blotting. Our data suggest that the ability to inhibit the proliferation of THP-1 or MCF-7 cells might be referred to meta- or para-substituted derivatives with electron-withdrawing groups -F, -Br, or -CF(3) at anilide moiety. This effect was accompanied by accumulation of cells in G1 phase. Compound 10 also induced apoptosis in THP-1 cells in association with a loss of mitochondrial membrane potential and production of mitochondrial superoxide. Our study provides a new insight into the action of salicylanilide derivatives, hydroxynaphthalene carboxamides, in cancer cells. Thus, their structure merits further investigation as a model moiety of new small-molecule compounds with potential anticancer properties.},
note = {Place: Switzerland},
keywords = {Anilides/chemistry/*pharmacology, Antineoplastic Agents/chemistry/pharmacology, antiproliferative effect, Apoptosis, Apoptosis/*drug effects, Cell Cycle, Cell Cycle/drug effects, Cell Proliferation/*drug effects, Cell Survival/drug effects, Humans, hydroxynaphthalene carboxamides, MCF-7 Cells, Membrane Potential, Mitochondria/*drug effects/metabolism, Mitochondrial/drug effects, Molecular Structure, Naphthols/*chemistry, Reactive Oxygen Species/metabolism, salicylanilides, Salicylanilides/chemistry/pharmacology, Structure-Activity Relationship, Superoxides/metabolism, THP-1 Cells},
pubstate = {published},
tppubtype = {article}
}
Vyhlídalová, Barbora; Krasulová, Kristýna; Pečinková, Petra; Marcalíková, Adéla; Vrzal, Radim; Zemánková, Lenka; Vančo, Jan; Trávníček, Zdeněk; Vondráček, Jan; Karasová, Martina; Mani, Sridhar; Dvořák, Zdeněk
Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization. Journal Article
In: International journal of molecular sciences, vol. 21, no. 7, 2020, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Gastrointestinal Microbiome/drug effects, Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/*metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/*metabolism, Cell Line, Cytochrome P-450 CYP1A1/genetics, Gene Expression, Genes, Genetic, Humans, Indoles, Ligands, Metabolic Networks and Pathways, Mice, Microbiome, Promoter Regions, Protein Binding, Protein Multimerization, Receptors, Reporter, tryptophan, Tryptophan/*metabolism, Tumor
@article{vyhlidalova_gut_2020,
title = {Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization.},
author = {Barbora Vyhlídalová and Kristýna Krasulová and Petra Pečinková and Adéla Marcalíková and Radim Vrzal and Lenka Zemánková and Jan Vančo and Zdeněk Trávníček and Jan Vondráček and Martina Karasová and Sridhar Mani and Zdeněk Dvořák},
doi = {10.3390/ijms21072614},
issn = {1422-0067},
year = {2020},
date = {2020-04-01},
journal = {International journal of molecular sciences},
volume = {21},
number = {7},
abstract = {We examined the effects of gut microbial catabolites of tryptophan on the aryl hydrocarbon receptor (AhR). Using a reporter gene assay, we show that all studied catabolites are low-potency agonists of human AhR. The efficacy of catabolites differed substantially, comprising agonists with no or low (i3-propionate, i3-acetate, i3-lactate, i3-aldehyde), medium (i3-ethanol, i3-acrylate, skatole, tryptamine), and high (indole, i3-acetamide, i3-pyruvate) efficacies. We displayed ligand-selective antagonist activities by i3-pyruvate, i3-aldehyde, indole, skatole, and tryptamine. Ligand binding assay identified low affinity (skatole, i3-pyruvate, and i3-acetamide) and very low affinity (i3-acrylate, i3-ethanol, indole) ligands of the murine AhR. Indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, and i3-acetamide induced CYP1A1 mRNA in intestinal LS180 and HT-29 cells, but not in the AhR-knockout HT-29 variant. We observed a similar CYP1A1 induction pattern in primary human hepatocytes. The most AhR-active catabolites (indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, i3-acetamide) elicited nuclear translocation of the AhR, followed by a formation of AhR-ARNT heterodimer and enhanced binding of the AhR to the CYP1A1 gene promoter. Collectively, we comprehensively characterized the interactions of gut microbial tryptophan catabolites with the AhR, which may expand the current understanding of their potential roles in intestinal health and disease.},
note = {Place: Switzerland},
keywords = {*Gastrointestinal Microbiome/drug effects, Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/*metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/*metabolism, Cell Line, Cytochrome P-450 CYP1A1/genetics, Gene Expression, Genes, Genetic, Humans, Indoles, Ligands, Metabolic Networks and Pathways, Mice, Microbiome, Promoter Regions, Protein Binding, Protein Multimerization, Receptors, Reporter, tryptophan, Tryptophan/*metabolism, Tumor},
pubstate = {published},
tppubtype = {article}
}
Hofmanová, Jiřina; Slavík, Josef; Ovesná, Petra; Tylichová, Zuzana; Dušek, Ladislav; Straková, Nicol; Vaculová, Alena Hyršlová; Ciganek, Miroslav; Kala, Zdeněk; Jíra, Miroslav; Penka, Igor; Kyclová, Jitka; Kolář, Zdeněk; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: PloS one, vol. 15, no. 1, pp. e0228010, 2020, ISSN: 1932-6203, (Place: United States).
Abstract | Links | BibTeX | Tags: *Lipidomics, Cell Line, Colon/*pathology, Colonic Neoplasms/*metabolism/*pathology, Epithelial Cells/*metabolism/pathology, Humans, Phospholipids/*metabolism, Principal Component Analysis, Tumor
@article{hofmanova_phospholipid_2020,
title = {Phospholipid profiling enables to discriminate tumor- and non-tumor-derived human colon epithelial cells: Phospholipidome similarities and differences in colon cancer cell lines and in patient-derived cell samples.},
author = {Jiřina Hofmanová and Josef Slavík and Petra Ovesná and Zuzana Tylichová and Ladislav Dušek and Nicol Straková and Alena Hyršlová Vaculová and Miroslav Ciganek and Zdeněk Kala and Miroslav Jíra and Igor Penka and Jitka Kyclová and Zdeněk Kolář and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1371/journal.pone.0228010},
issn = {1932-6203},
year = {2020},
date = {2020-01-01},
journal = {PloS one},
volume = {15},
number = {1},
pages = {e0228010},
abstract = {Identification of changes of phospholipid (PL) composition occurring during colorectal cancer (CRC) development may help us to better understand their roles in CRC cells. Here, we used LC-MS/MS-based PL profiling of cell lines derived from normal colon mucosa, or isolated at distinct stages of CRC development, in order to study alterations of PL species potentially linked with cell transformation. We found that a detailed evaluation of phosphatidylinositol (PI) and phosphatidylserine (PS) classes allowed us to cluster the studied epithelial cell lines according to their origin: i) cells originally derived from normal colon tissue (NCM460, FHC); ii) cell lines derived from colon adenoma or less advanced differentiating adenocarcinoma cells (AA/C1, HT-29); or, iii) cells obtained by in vitro transformation of adenoma cells and advanced colon adenocarcinoma cells (HCT-116, AA/C1/SB10, SW480, SW620). Although we tentatively identified several PS and PI species contributing to cell line clustering, full PI and PS profiles appeared to be a key to the successful cell line discrimination. In parallel, we compared PL composition of primary epithelial (EpCAM-positive) cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients, with PL profiles of cell lines derived from normal colon mucosa (NCM460) and from colon adenocarcinoma (HCT-116, SW480) cells, respectively. In general, higher total levels of all PL classes were observed in tumor cells. The overall PL profiles of the cell lines, when compared with the respective patient-derived cells, exhibited similarities. Nevertheless, there were also some notable differences in levels of individual PL species. This indicated that epithelial cell lines, derived either from normal colon tissue or from CRC cells, could be employed as models for functional lipidomic analyses of colon cells, albeit with some caution. The biological significance of the observed PL deregulation, or their potential links with specific CRC stages, deserve further investigation.},
note = {Place: United States},
keywords = {*Lipidomics, Cell Line, Colon/*pathology, Colonic Neoplasms/*metabolism/*pathology, Epithelial Cells/*metabolism/pathology, Humans, Phospholipids/*metabolism, Principal Component Analysis, Tumor},
pubstate = {published},
tppubtype = {article}
}
2019
Svobodová, Jana; Procházková, Jiřina; Kabátková, Markéta; Krkoška, Martin; Šmerdová, Lenka; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors. Journal Article
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 172, no. 2, pp. 368–384, 2019, ISSN: 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: *Models, Adaptor Proteins, Apoptosis, Apoptosis/*drug effects/genetics, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Biological, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects/genetics, Gene Expression/drug effects, HepaRG cells, Hippo signaling, Humans, Liver/*drug effects/pathology, Polychlorinated Dibenzodioxins/*toxicity, Receptors, RNA, Signal Transducing/genetics, Signal Transduction, Small Interfering/genetics, Stem Cells/*drug effects/pathology, Trans-Activators/genetics, Transcription Factors/genetics, Transcriptional Coactivator with PDZ-Binding Motif Proteins, Transfection, YAP-Signaling Proteins
@article{svobodova_2378-tetrachlorodibenzo-p-dioxin_2019,
title = {2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors.},
author = {Jana Svobodová and Jiřina Procházková and Markéta Kabátková and Martin Krkoška and Lenka Šmerdová and Helena Líbalová and Jan Topinka and Jiří Kléma and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1093/toxsci/kfz202},
issn = {1096-0929},
year = {2019},
date = {2019-12-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {172},
number = {2},
pages = {368–384},
abstract = {The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.},
note = {Place: United States},
keywords = {*Models, Adaptor Proteins, Apoptosis, Apoptosis/*drug effects/genetics, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Biological, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects/genetics, Gene Expression/drug effects, HepaRG cells, Hippo signaling, Humans, Liver/*drug effects/pathology, Polychlorinated Dibenzodioxins/*toxicity, Receptors, RNA, Signal Transducing/genetics, Signal Transduction, Small Interfering/genetics, Stem Cells/*drug effects/pathology, Trans-Activators/genetics, Transcription Factors/genetics, Transcriptional Coactivator with PDZ-Binding Motif Proteins, Transfection, YAP-Signaling Proteins},
pubstate = {published},
tppubtype = {article}
}
Boudny, Miroslav; Zemanova, Jana; Khirsariya, Prashant; Borsky, Marek; Verner, Jan; Cerna, Jana; Oltova, Alexandra; Seda, Vaclav; Mraz, Marek; Jaros, Josef; Jaskova, Zuzana; Spunarova, Michaela; Brychtova, Yvona; Soucek, Karel; Drapela, Stanislav; Kasparkova, Marie; Mayer, Jiri; Paruch, Kamil; Trbusek, Martin
Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells. Journal Article
In: Haematologica, vol. 104, no. 12, pp. 2443–2455, 2019, ISSN: 1592-8721 0390-6078, (Place: Italy).
Abstract | Links | BibTeX | Tags: *Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays
@article{boudny_novel_2019,
title = {Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells.},
author = {Miroslav Boudny and Jana Zemanova and Prashant Khirsariya and Marek Borsky and Jan Verner and Jana Cerna and Alexandra Oltova and Vaclav Seda and Marek Mraz and Josef Jaros and Zuzana Jaskova and Michaela Spunarova and Yvona Brychtova and Karel Soucek and Stanislav Drapela and Marie Kasparkova and Jiri Mayer and Kamil Paruch and Martin Trbusek},
doi = {10.3324/haematol.2018.203430},
issn = {1592-8721 0390-6078},
year = {2019},
date = {2019-12-01},
journal = {Haematologica},
volume = {104},
number = {12},
pages = {2443–2455},
abstract = {Introduction of small-molecule inhibitors of B-cell receptor signaling and BCL2 protein significantly improves therapeutic options in chronic lymphocytic leukemia. However, some patients suffer from adverse effects mandating treatment discontinuation, and cases with TP53 defects more frequently experience early progression of the disease. Development of alternative therapeutic approaches is, therefore, of critical importance. Here we report details of the anti-chronic lymphocytic leukemia single-agent activity of MU380, our recently identified potent, selective, and metabolically robust inhibitor of checkpoint kinase 1. We also describe a newly developed enantioselective synthesis of MU380, which allows preparation of gram quantities of the substance. Checkpoint kinase 1 is a master regulator of replication operating primarily in intra-S and G(2)/M cell cycle checkpoints. Initially tested in leukemia and lymphoma cell lines, MU380 significantly potentiated efficacy of gemcitabine, a clinically used inducer of replication stress. Moreover, MU380 manifested substantial single-agent activity in both TP53-wild type and TP53-mutated leukemia and lymphoma cell lines. In chronic lymphocytic leukemia-derived cell lines MEC-1, MEC-2 (both TP53-mut), and OSU-CLL (TP53-wt) the inhibitor impaired cell cycle progression and induced apoptosis. In primary clinical samples, MU380 used as a single-agent noticeably reduced the viability of unstimulated chronic lymphocytic leukemia cells as well as those induced to proliferate by anti-CD40/IL-4 stimuli. In both cases, effects were comparable in samples harboring p53 pathway dysfunction (TP53 mutations or ATM mutations) and TP53-wt/ATM-wt cells. Lastly, MU380 also exhibited significant in vivo activity in a xenotransplant mouse model (immunodeficient strain NOD-scid IL2Rγ(null) ) where it efficiently suppressed growth of subcutaneous tumors generated from MEC-1 cells.},
note = {Place: Italy},
keywords = {*Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Machala, Miroslav; Procházková, Jiřina; Hofmanová, Jiřina; Králiková, Lucie; Slavík, Josef; Tylichová, Zuzana; Ovesná, Petra; Kozubík, Alois; Vondráček, Jan
Colon Cancer and Perturbations of the Sphingolipid Metabolism. Journal Article
In: International journal of molecular sciences, vol. 20, no. 23, 2019, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Gene Expression Regulation, Acid Ceramidase/genetics/metabolism, Alkaline Ceramidase/genetics/metabolism, Animal, Animals, Ceramides/metabolism, colon cancer (CRC) sphingolipidomics, colon cancer cells, Colonic Neoplasms/*enzymology/genetics/pathology, colorectal cancer, Cultured, Disease Models, glycosphingolipid, Humans, Lactosylceramide, Lactosylceramides/*metabolism, Lipid Metabolism/*genetics, Lysophospholipids/metabolism, Neoplastic, Neutral Ceramidase/genetics/metabolism, Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism, Proto-Oncogene Proteins c-akt/genetics/metabolism, sphingolipid, Sphingolipids/*metabolism, Sphingosine N-Acyltransferase/genetics/metabolism, sphingosine-1-phosphate, Sphingosine/analogs & derivatives/metabolism, Tumor Cells
@article{machala_colon_2019,
title = {Colon Cancer and Perturbations of the Sphingolipid Metabolism.},
author = {Miroslav Machala and Jiřina Procházková and Jiřina Hofmanová and Lucie Králiková and Josef Slavík and Zuzana Tylichová and Petra Ovesná and Alois Kozubík and Jan Vondráček},
doi = {10.3390/ijms20236051},
issn = {1422-0067},
year = {2019},
date = {2019-11-01},
journal = {International journal of molecular sciences},
volume = {20},
number = {23},
abstract = {The development and progression of colorectal cancer (CRC), a major cause of cancer-related death in the western world, is accompanied with alterations of sphingolipid (SL) composition in colon tumors. A number of enzymes involved in the SL metabolism have been found to be deregulated in human colon tumors, in experimental rodent studies, and in human colon cancer cells in vitro. Therefore, the enzymatic pathways that modulate SL levels have received a significant attention, due to their possible contribution to CRC development, or as potential therapeutic targets. Many of these enzymes are associated with an increased sphingosine-1-phosphate/ceramide ratio, which is in turn linked with increased colon cancer cell survival, proliferation and cancer progression. Nevertheless, more attention should also be paid to the more complex SLs, including specific glycosphingolipids, such as lactosylceramides, which can be also deregulated during CRC development. In this review, we focus on the potential roles of individual SLs/SL metabolism enzymes in colon cancer, as well as on the pros and cons of employing the current in vitro models of colon cancer cells for lipidomic studies investigating the SL metabolism in CRC.},
note = {Place: Switzerland},
keywords = {*Gene Expression Regulation, Acid Ceramidase/genetics/metabolism, Alkaline Ceramidase/genetics/metabolism, Animal, Animals, Ceramides/metabolism, colon cancer (CRC) sphingolipidomics, colon cancer cells, Colonic Neoplasms/*enzymology/genetics/pathology, colorectal cancer, Cultured, Disease Models, glycosphingolipid, Humans, Lactosylceramide, Lactosylceramides/*metabolism, Lipid Metabolism/*genetics, Lysophospholipids/metabolism, Neoplastic, Neutral Ceramidase/genetics/metabolism, Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism, Proto-Oncogene Proteins c-akt/genetics/metabolism, sphingolipid, Sphingolipids/*metabolism, Sphingosine N-Acyltransferase/genetics/metabolism, sphingosine-1-phosphate, Sphingosine/analogs & derivatives/metabolism, Tumor Cells},
pubstate = {published},
tppubtype = {article}
}
Jiřík, Radovan; Taxt, Torfinn; Macíček, Ondřej; Bartoš, Michal; Kratochvíla, Jiří; Souček, Karel; Dražanová, Eva; Krátká, Lucie; Hampl, Aleš; Starčuk, Zenon Jr
Blind deconvolution estimation of an arterial input function for small animal DCE-MRI. Journal Article
In: Magnetic resonance imaging, vol. 62, pp. 46–56, 2019, ISSN: 1873-5894 0730-725X, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Magnetic Resonance Imaging, Algorithms, Animals, Arterial input function, Arteries/*diagnostic imaging, Blind deconvolution, Computer Simulation, Computer-Assisted/*methods, Contrast Media/*pharmacokinetics, DCE-MRI, Humans, Image Processing, Inbred BALB C, Mice, Necrosis/pathology, Perfusion, Pharmacokinetics, Regression Analysis, Reproducibility of Results, Signal-To-Noise Ratio
@article{jirik_blind_2019,
title = {Blind deconvolution estimation of an arterial input function for small animal DCE-MRI.},
author = {Radovan Jiřík and Torfinn Taxt and Ondřej Macíček and Michal Bartoš and Jiří Kratochvíla and Karel Souček and Eva Dražanová and Lucie Krátká and Aleš Hampl and Zenon Jr Starčuk},
doi = {10.1016/j.mri.2019.05.024},
issn = {1873-5894 0730-725X},
year = {2019},
date = {2019-10-01},
journal = {Magnetic resonance imaging},
volume = {62},
pages = {46–56},
abstract = {PURPOSE: One of the main obstacles for reliable quantitative dynamic contrast-enhanced (DCE) MRI is the need for accurate knowledge of the arterial input function (AIF). This is a special challenge for preclinical small animal applications where it is very difficult to measure the AIF without partial volume and flow artifacts. Furthermore, using advanced pharmacokinetic models (allowing estimation of blood flow and permeability-surface area product in addition to the classical perfusion parameters) poses stricter requirements on the accuracy and precision of AIF estimation. This paper addresses small animal DCE-MRI with advanced pharmacokinetic models and presents a method for estimation of the AIF based on blind deconvolution. METHODS: A parametric AIF model designed for small animal physiology and use of advanced pharmacokinetic models is proposed. The parameters of the AIF are estimated using multichannel blind deconvolution. RESULTS: Evaluation on simulated data show that for realistic signal to noise ratios blind deconvolution AIF estimation leads to comparable results as the use of the true AIF. Evaluation on real data based on DCE-MRI with two contrast agents of different molecular weights showed a consistence with the known effects of the molecular weight. CONCLUSION: Multi-channel blind deconvolution using the proposed AIF model specific for small animal DCE-MRI provides reliable perfusion parameter estimates under realistic signal to noise conditions.},
note = {Place: Netherlands},
keywords = {*Magnetic Resonance Imaging, Algorithms, Animals, Arterial input function, Arteries/*diagnostic imaging, Blind deconvolution, Computer Simulation, Computer-Assisted/*methods, Contrast Media/*pharmacokinetics, DCE-MRI, Humans, Image Processing, Inbred BALB C, Mice, Necrosis/pathology, Perfusion, Pharmacokinetics, Regression Analysis, Reproducibility of Results, Signal-To-Noise Ratio},
pubstate = {published},
tppubtype = {article}
}
Pěnčíková, Kateřina; Ciganek, Miroslav; Neča, Jiří; Illés, Peter; Dvořák, Zdeněk; Vondráček, Jan; Machala, Miroslav
Modulation of endocrine nuclear receptor activities by polyaromatic compounds present in fractionated extracts of diesel exhaust particles. Journal Article
In: The Science of the total environment, vol. 677, pp. 626–636, 2019, ISSN: 1879-1026 0048-9697, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Vehicle Emissions, Air Pollutants/*adverse effects, Androgen receptor, Cell Line, Cytoplasmic and Nuclear/*genetics/metabolism, Diesel exhaust particles, Estrogen receptor α, Glucocorticoid receptor, Humans, Particulate Matter/*adverse effects, Peroxisome proliferator-activated receptor γ, Polycyclic Aromatic Hydrocarbons/*adverse effects, Receptors, Thyroid receptor α
@article{pencikova_modulation_2019,
title = {Modulation of endocrine nuclear receptor activities by polyaromatic compounds present in fractionated extracts of diesel exhaust particles.},
author = {Kateřina Pěnčíková and Miroslav Ciganek and Jiří Neča and Peter Illés and Zdeněk Dvořák and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.scitotenv.2019.04.390},
issn = {1879-1026 0048-9697},
year = {2019},
date = {2019-08-01},
journal = {The Science of the total environment},
volume = {677},
pages = {626–636},
abstract = {Organic pollutants associated with diesel exhaust particles (DEP), such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives, may negatively impact human health. However, a comprehensive overview of their effects on endocrine nuclear receptor activities is still missing. Here, we evaluated the effects of extracts and chromatographic fractions (fractionated according to increasing polarity) of two standard reference materials derived from distinct types of diesel engines (SRM 2975, SRM 1650b), on activation of androgen receptor (AR), estrogen receptor alpha (ERα), peroxisome proliferator-activated receptor γ (PPARγ), glucocorticoid receptor (GR) and thyroid receptor α (TRα), using human cell-based reporter gene assays. Neither DEP standard modulated AR or GR activities. Crude extracts and fractions of SRM 1650b and SRM 2975 suppressed ERα-mediated activity in the ER-CALUX™ assay; however, this effect could be partly linked to their cytotoxicity in this cell line. We observed that only SRM 2975 extract and its fractions were partial PPARγ inducers, while SRM 1650b extract was not active towards this receptor. Importantly, we found that both extracts and polar fractions of SRM activated TRα and significantly potentiated the activity of endogenous TRα ligand, triiodothyronine. Based on a detailed chemical analysis of both extracts and their polar fractions, we identified several oxygenated PAH derivatives, that were present at relatively high levels in the analyzed DEP standards, including 3-nitrobenzanthrone (3-NBA), anthracene-9,10-dione, phenanthrene-9,10-dione, 9H-fluoren-9-one or benzo[a]anthracene-7,12-dione, to activate TRα activity. Nevertheless, these compounds provided only a minor contribution to the overall TRα activity identified in polar fractions. This suggests that yet unidentified polar polyaromatic compounds associated with DEP may, apart from their known impact on the aryl hydrocarbon receptor or steroid signaling, deregulate activities of additional nuclear receptors, in particular of TRα. This illustrates the need to better characterize endocrine disrupting activities of DEP.},
note = {Place: Netherlands},
keywords = {*Vehicle Emissions, Air Pollutants/*adverse effects, Androgen receptor, Cell Line, Cytoplasmic and Nuclear/*genetics/metabolism, Diesel exhaust particles, Estrogen receptor α, Glucocorticoid receptor, Humans, Particulate Matter/*adverse effects, Peroxisome proliferator-activated receptor γ, Polycyclic Aromatic Hydrocarbons/*adverse effects, Receptors, Thyroid receptor α},
pubstate = {published},
tppubtype = {article}
}
Šimečková, Šárka; Kahounová, Zuzana; Fedr, Radek; Remšík, Ján; Slabáková, Eva; Suchánková, Tereza; Procházková, Jiřina; Bouchal, Jan; Kharaishvili, Gvantsa; Král, Milan; Beneš, Petr; Souček, Karel
High Skp2 expression is associated with a mesenchymal phenotype and increased tumorigenic potential of prostate cancer cells. Journal Article
In: Scientific reports, vol. 9, no. 1, pp. 5695, 2019, ISSN: 2045-2322, (Place: England).
Abstract | Links | BibTeX | Tags: *Epithelial-Mesenchymal Transition, *Gene Expression Regulation, Animals, CD24 Antigen/genetics, Cell Line, Humans, Hyaluronan Receptors/genetics, Male, Mice, Neoplasm Grading, Neoplastic, Neoplastic Stem Cells/metabolism/*physiology, Nude, PC-3 Cells, Prostatic Neoplasms/*genetics/metabolism/physiopathology, S-Phase Kinase-Associated Proteins/*genetics, Tumor, Xenograft Model Antitumor Assays
@article{simeckova_high_2019,
title = {High Skp2 expression is associated with a mesenchymal phenotype and increased tumorigenic potential of prostate cancer cells.},
author = {Šárka Šimečková and Zuzana Kahounová and Radek Fedr and Ján Remšík and Eva Slabáková and Tereza Suchánková and Jiřina Procházková and Jan Bouchal and Gvantsa Kharaishvili and Milan Král and Petr Beneš and Karel Souček},
doi = {10.1038/s41598-019-42131-y},
issn = {2045-2322},
year = {2019},
date = {2019-04-01},
journal = {Scientific reports},
volume = {9},
number = {1},
pages = {5695},
abstract = {Skp2 is a crucial component of SCF(Skp2) E3 ubiquitin ligase and is often overexpressed in various types of cancer, including prostate cancer (PCa). The epithelial-to-mesenchymal transition (EMT) is involved in PCa progression. The acquisition of a mesenchymal phenotype that results in a cancer stem cell (CSC) phenotype in PCa was described. Therefore, we aimed to investigate the expression and localization of Skp2 in clinical samples from patients with PCa, the association of Skp2 with EMT status, and the role of Skp2 in prostate CSC. We found that nuclear expression of Skp2 was increased in patients with PCa compared to those with benign hyperplasia, and correlated with high Gleason score in PCa patients. Increased Skp2 expression was observed in PCa cell lines with mesenchymal and CSC-like phenotype compared to their epithelial counterparts. Conversely, the CSC-like phenotype was diminished in cells in which SKP2 expression was silenced. Furthermore, we observed that Skp2 downregulation led to the decrease in subpopulation of CD44(+)CD24(-) cancer stem-like cells. Finally, we showed that high expression levels of both CD24 and CD44 were associated with favorable recurrence-free survival for PCa patients. This study uncovered the Skp2-mediated CSC-like phenotype with oncogenic functions in PCa.},
note = {Place: England},
keywords = {*Epithelial-Mesenchymal Transition, *Gene Expression Regulation, Animals, CD24 Antigen/genetics, Cell Line, Humans, Hyaluronan Receptors/genetics, Male, Mice, Neoplasm Grading, Neoplastic, Neoplastic Stem Cells/metabolism/*physiology, Nude, PC-3 Cells, Prostatic Neoplasms/*genetics/metabolism/physiopathology, S-Phase Kinase-Associated Proteins/*genetics, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Kahounová, Zuzana; Slabáková, Eva; Binó, Lucia; Remšík, Ján; Fedr, Radek; Bouchal, Jan; Vrtěl, Radek; Jurečková, Lucie; Porokh, Volodymyr; Páralová, Darja; Hampl, Aleš; Souček, Karel
Generation of human iPSCs from fetal prostate fibroblasts HPrF. Journal Article
In: Stem cell research, vol. 35, pp. 101405, 2019, ISSN: 1876-7753 1873-5061, (Place: England).
Abstract | Links | BibTeX | Tags: *Cellular Reprogramming Techniques, *Fetus/cytology/embryology, *Fibroblasts/cytology/metabolism, *Induced Pluripotent Stem Cells/cytology/metabolism, *Prostate/cytology/embryology, Cellular Reprogramming, Humans, Kruppel-Like Factor 4, Male
@article{kahounova_generation_2019,
title = {Generation of human iPSCs from fetal prostate fibroblasts HPrF.},
author = {Zuzana Kahounová and Eva Slabáková and Lucia Binó and Ján Remšík and Radek Fedr and Jan Bouchal and Radek Vrtěl and Lucie Jurečková and Volodymyr Porokh and Darja Páralová and Aleš Hampl and Karel Souček},
doi = {10.1016/j.scr.2019.101405},
issn = {1876-7753 1873-5061},
year = {2019},
date = {2019-03-01},
journal = {Stem cell research},
volume = {35},
pages = {101405},
abstract = {Human induced pluripotent stem cell line was generated from commercially available primary human prostate fibroblasts HPrF derived from a fetus, aged 18-24 weeks of gestation. The fibroblast cell line was reprogrammed with Yamanaka factors (OCT4, SOX2, c-MYC, KLF4) using CytoTune™-iPS 2.0 Sendai Reprogramming Kit. Pluripotency of the derived transgene-free iPS cell line was confirmed both in vitro by detecting the expression of factors of pluripotency on a single-cell level, and in vivo using teratoma formation assay. This iPS cell line will be a useful tool for studying both normal prostate development and prostate cancer disease.},
note = {Place: England},
keywords = {*Cellular Reprogramming Techniques, *Fetus/cytology/embryology, *Fibroblasts/cytology/metabolism, *Induced Pluripotent Stem Cells/cytology/metabolism, *Prostate/cytology/embryology, Cellular Reprogramming, Humans, Kruppel-Like Factor 4, Male},
pubstate = {published},
tppubtype = {article}
}
McCarrick, Sarah; Cunha, Virginia; Zapletal, Ondřej; Vondráček, Jan; Dreij, Kristian
In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons. Journal Article
In: Environmental pollution (Barking, Essex : 1987), vol. 246, pp. 678–687, 2019, ISSN: 1873-6424 0269-7491, (Place: England).
Abstract | Links | BibTeX | Tags: *DNA Damage, Animals, Cell Culture Techniques, Cell Survival/drug effects/genetics, Comet assay, Embryonic Development/drug effects/genetics, Environmental Monitoring/*methods, Epithelial Cells/drug effects/pathology, Genotoxicity, Hep G2 Cells, Humans, Micronucleus assay, Mutagens/analysis/*toxicity, Oxygen/chemistry, Oxygenated PAH, Polycyclic Aromatic Hydrocarbons/analysis/*toxicity, Zebrafish, Zebrafish/embryology
@article{mccarrick_vitro_2019,
title = {In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons.},
author = {Sarah McCarrick and Virginia Cunha and Ondřej Zapletal and Jan Vondráček and Kristian Dreij},
doi = {10.1016/j.envpol.2018.12.092},
issn = {1873-6424 0269-7491},
year = {2019},
date = {2019-03-01},
journal = {Environmental pollution (Barking, Essex : 1987)},
volume = {246},
pages = {678–687},
abstract = {Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a group of environmental pollutants found in complex mixtures together with PAHs. In contrast to the extensively studied PAHs, which have been established to have mutagenic and carcinogenic properties, much less is known about the effects of oxy-PAHs. The present work aimed to investigate the genotoxic potency of a set of environmentally relevant oxy-PAHs along with environmental soil samples in human bronchial epithelial cells (HBEC). We found that all oxy-PAHs tested induced DNA strand breaks in a dose-dependent manner and some of the oxy-PAHs further induced micronuclei formation. Our results showed weak effects in response to the oxy-PAH containing subfraction of the soil sample. The genotoxic potency was confirmed in both HBEC and HepG2 cells following exposure to oxy-PAHs by an increased level of phospho-Chk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro. We further exposed zebrafish embryos to single oxy-PAHs or a binary mixture with PAH benzo[a]pyrene (B[a]P) and found the mixture to induce comparable or greater effects on the induction of DNA strand breaks compared to the sum of that induced by B[a]P and oxy-PAHs alone. In conclusion, oxy-PAHs were found to elicit genotoxic effects at similar or higher levels to that of B[a]P which indicates that oxy-PAHs may contribute significantly to the total carcinogenic potency of environmental PAH mixtures. This emphasizes further investigations of these compounds as well as the need to include oxy-PAHs in environmental monitoring programs in order to improve health risk assessment.},
note = {Place: England},
keywords = {*DNA Damage, Animals, Cell Culture Techniques, Cell Survival/drug effects/genetics, Comet assay, Embryonic Development/drug effects/genetics, Environmental Monitoring/*methods, Epithelial Cells/drug effects/pathology, Genotoxicity, Hep G2 Cells, Humans, Micronucleus assay, Mutagens/analysis/*toxicity, Oxygen/chemistry, Oxygenated PAH, Polycyclic Aromatic Hydrocarbons/analysis/*toxicity, Zebrafish, Zebrafish/embryology},
pubstate = {published},
tppubtype = {article}
}
Tylichová, Zuzana; Neča, Jiří; Topinka, Jan; Milcová, Alena; Hofmanová, Jiřina; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
n-3 Polyunsaturated fatty acids alter benzo[a]pyrene metabolism and genotoxicity in human colon epithelial cell models. Journal Article
In: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, vol. 124, pp. 374–384, 2019, ISSN: 1873-6351 0278-6915, (Place: England).
Abstract | Links | BibTeX | Tags: Anticarcinogenic Agents/*pharmacology, Benzo(a)pyrene/adverse effects/*metabolism, Cell Line, Colon cancer, Cytochrome P450 Family 1/metabolism, DNA Adducts/metabolism, DNA Damage, DNA Damage/drug effects, Docosahexaenoic acid, Docosahexaenoic Acids/*pharmacology, Eicosapentaenoic acid, Eicosapentaenoic Acid/*pharmacology, Epithelial Cells/*drug effects, Histones/metabolism, Humans, Mutagens/adverse effects/*metabolism, Polycyclic aromatic hydrocarbon, S Phase Cell Cycle Checkpoints/drug effects, Tumor
@article{tylichova_n-3_2019,
title = {n-3 Polyunsaturated fatty acids alter benzo[a]pyrene metabolism and genotoxicity in human colon epithelial cell models.},
author = {Zuzana Tylichová and Jiří Neča and Jan Topinka and Alena Milcová and Jiřina Hofmanová and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.fct.2018.12.021},
issn = {1873-6351 0278-6915},
year = {2019},
date = {2019-02-01},
journal = {Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association},
volume = {124},
pages = {374–384},
abstract = {Dietary carcinogens, such as benzo[a]pyrene (BaP), are suspected to contribute to colorectal cancer development. n-3 Polyunsaturated fatty acids (PUFAs) decrease colorectal cancer risk in individuals consuming diets rich in PUFAs. Here, we investigated the impact of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid on metabolism and genotoxicity of BaP in human cell models derived from the colon: HT-29 and HCT-116 cell lines. Both PUFAs reduced levels of excreted BaP metabolites, in particular BaP-tetrols and hydroxylated BaP metabolites, as well as formation of DNA adducts in HT-29 and HCT-116 cells. However, EPA appeared to be a more potent inhibitor of formation of some intracellular BaP metabolites, including BaP-7,8-dihydrodiol. EPA also reduced phosphorylation of histone H2AX (Ser139) in HT-29 cells, which indicated that it may reduce further forms of DNA damage, including DNA double strand breaks. Both PUFAs inhibited induction of CYP1 activity in colon cells determined as 7-ethoxyresorufin-O-deethylase (EROD); this was at least partly linked with inhibition of induction of CYP1A1, 1A2 and 1B1 mRNAs. The downregulation and/or inhibition of CYP1 enzymes by PUFAs could thus alter metabolism and reduce genotoxicity of BaP in human colon cells, which might contribute to known chemopreventive effects of PUFAs in colon epithelium.},
note = {Place: England},
keywords = {Anticarcinogenic Agents/*pharmacology, Benzo(a)pyrene/adverse effects/*metabolism, Cell Line, Colon cancer, Cytochrome P450 Family 1/metabolism, DNA Adducts/metabolism, DNA Damage, DNA Damage/drug effects, Docosahexaenoic acid, Docosahexaenoic Acids/*pharmacology, Eicosapentaenoic acid, Eicosapentaenoic Acid/*pharmacology, Epithelial Cells/*drug effects, Histones/metabolism, Humans, Mutagens/adverse effects/*metabolism, Polycyclic aromatic hydrocarbon, S Phase Cell Cycle Checkpoints/drug effects, Tumor},
pubstate = {published},
tppubtype = {article}
}
Němec, Václav; Hylsová, Michaela; Maier, Lukáš; Flegel, Jana; Sievers, Sonja; Ziegler, Slava; Schröder, Martin; Berger, Benedict-Tilman; Chaikuad, Apirat; Valčíková, Barbora; Uldrijan, Stjepan; Drápela, Stanislav; Souček, Karel; Waldmann, Herbert; Knapp, Stefan; Paruch, Kamil
Furo[3,2-b]pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway. Journal Article
In: Angewandte Chemie (International ed. in English), vol. 58, no. 4, pp. 1062–1066, 2019, ISSN: 1521-3773 1433-7851, (Place: Germany).
Abstract | Links | BibTeX | Tags: Binding Sites, biological activity, Cell Survival/drug effects, chemical probes, Furans/*chemistry, Hedgehog Proteins/*chemistry, heterocycles, Humans, inhibitors, Inhibitory Concentration 50, kinases, MCF-7 Cells, Molecular Structure, Protein Binding, Protein Kinase Inhibitors/*chemical synthesis/chemistry/pharmacology, Pyridines/*chemistry, Small Molecule Libraries/*chemical synthesis/chemistry/pharmacology
@article{nemec_furo32-bpyridine_2019,
title = {Furo[3,2-b]pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway.},
author = {Václav Němec and Michaela Hylsová and Lukáš Maier and Jana Flegel and Sonja Sievers and Slava Ziegler and Martin Schröder and Benedict-Tilman Berger and Apirat Chaikuad and Barbora Valčíková and Stjepan Uldrijan and Stanislav Drápela and Karel Souček and Herbert Waldmann and Stefan Knapp and Kamil Paruch},
doi = {10.1002/anie.201810312},
issn = {1521-3773 1433-7851},
year = {2019},
date = {2019-01-01},
journal = {Angewandte Chemie (International ed. in English)},
volume = {58},
number = {4},
pages = {1062–1066},
abstract = {Reported is the identification of the furo[3,2-b]pyridine core as a novel scaffold for potent and highly selective inhibitors of cdc-like kinases (CLKs) and efficient modulators of the Hedgehog signaling pathway. Initially, a diverse target compound set was prepared by synthetic sequences based on chemoselective metal-mediated couplings, including assembly of the furo[3,2-b]pyridine scaffold by copper-mediated oxidative cyclization. Optimization of the subseries containing 3,5-disubstituted furo[3,2-b]pyridines afforded potent, cell-active, and highly selective inhibitors of CLKs. Profiling of the kinase-inactive subset of 3,5,7-trisubstituted furo[3,2-b]pyridines revealed sub-micromolar modulators of the Hedgehog pathway.},
note = {Place: Germany},
keywords = {Binding Sites, biological activity, Cell Survival/drug effects, chemical probes, Furans/*chemistry, Hedgehog Proteins/*chemistry, heterocycles, Humans, inhibitors, Inhibitory Concentration 50, kinases, MCF-7 Cells, Molecular Structure, Protein Binding, Protein Kinase Inhibitors/*chemical synthesis/chemistry/pharmacology, Pyridines/*chemistry, Small Molecule Libraries/*chemical synthesis/chemistry/pharmacology},
pubstate = {published},
tppubtype = {article}
}
Zapletal, Ondřej; Procházková, Jiřina; Dubec, Vít; Hofmanová, Jiřina; Kozubík, Alois; Vondráček, Jan
In: Toxicology, vol. 412, pp. 1–11, 2019, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Benzo(a)pyrene/*toxicity, Butyrate, Butyrates/*pharmacology, Carcinogens/*toxicity, Cell Line, Colon epithelium, Colon/cytology, Epithelial Cells/drug effects/metabolism, Humans, N-acetyltransferases, NAD(P)H:quinone oxidoreductase 1, Oxidoreductases/genetics/*metabolism, Polycyclic aromatic hydrocarbons, Transferases/genetics/*metabolism, UDP-glucuronosyltransferases, Xenobiotics/metabolism
@article{zapletal_butyrate_2019,
title = {Butyrate interacts with benzo[a]pyrene to alter expression and activities of xenobiotic metabolizing enzymes involved in metabolism of carcinogens within colon epithelial cell models.},
author = {Ondřej Zapletal and Jiřina Procházková and Vít Dubec and Jiřina Hofmanová and Alois Kozubík and Jan Vondráček},
doi = {10.1016/j.tox.2018.11.001},
issn = {1879-3185 0300-483X},
year = {2019},
date = {2019-01-01},
journal = {Toxicology},
volume = {412},
pages = {1–11},
abstract = {Butyrate helps to maintain colon homeostasis and exhibits chemopreventive effects in colon epithelium. We examined the interactive effects of butyrate and benzo[a]pyrene (BaP), dietary carcinogen, in regulation of expression of a panel of phase I and II xenobiotic metabolizing enzymes (XMEs) in human colon cells. In human colon carcinoma HCT-116 and HT-29 cell lines, butyrate alone increased mRNA levels of some enzymes, such as N-acetyltransferases (in particular NAT2). In combination with BaP, butyrate potentiated induction of cytochrome P450 family 1 enzymes (CYP1A1), aldo-keto reductases (AKR1C1) or UDP-glucuronosyltransferases (UGT1A1). There were some notable differences between cell lines, as butyrate potentiated induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) and UGT1A4 only in HCT-116 cells, and it even repressed AKR1C3 induction in HT-29 cells. Butyrate also promoted induction of CYP1, NQO1, NAT2, UGT1A1 or UGT1A4 in human colon Caco-2 cells, in a differentiation-dependent manner. Differentiated Caco-2 cells exhibited a higher inducibility of selected XME genes than undifferentiated cells. Butyrate increased induction of enzymatic activities of NATs, NQO1 and UGTs by BaP in HCT-116 and HT29 cells, whereas in differentiated Caco-2 cells it helped to increase only enzymatic activity of NQO1 and UGTs. Together, the present data suggest that butyrate may modulate expression/activities of several enzymes involved in metabolism of carcinogens in colon. In some cases (NAT2, UGT1 A1), this was linked to inhibition of histone deacetylases (HDAC), as confirmed by using HDAC inhibitor trichostatin A. These results may have implications for our understanding of the role of butyrate in regulation of XMEs and carcinogen metabolism in colon.},
note = {Place: Ireland},
keywords = {Benzo(a)pyrene/*toxicity, Butyrate, Butyrates/*pharmacology, Carcinogens/*toxicity, Cell Line, Colon epithelium, Colon/cytology, Epithelial Cells/drug effects/metabolism, Humans, N-acetyltransferases, NAD(P)H:quinone oxidoreductase 1, Oxidoreductases/genetics/*metabolism, Polycyclic aromatic hydrocarbons, Transferases/genetics/*metabolism, UDP-glucuronosyltransferases, Xenobiotics/metabolism},
pubstate = {published},
tppubtype = {article}
}
2018
Kahounová, Zuzana; Slabáková, Eva; Binó, Lucia; Remšík, Ján; Fedr, Radek; Bouchal, Jan; Kurfűrstová, Daniela; Vrtěl, Radek; Študent, Vladimír; Jurečková, Lucie; Porokh, Volodymyr; Hampl, Aleš; Souček, Karel
Generation of human iPSCs from human prostate cancer-associated fibroblasts IBPi002-A. Journal Article
In: Stem cell research, vol. 33, pp. 255–259, 2018, ISSN: 1876-7753 1873-5061, (Place: England).
Abstract | Links | BibTeX | Tags: Aged, Cancer-Associated Fibroblasts/*metabolism, Fibroblasts/*metabolism, Humans, Induced Pluripotent Stem Cells/*metabolism, Male, Prostatic Neoplasms/*genetics
@article{kahounova_generation_2018,
title = {Generation of human iPSCs from human prostate cancer-associated fibroblasts IBPi002-A.},
author = {Zuzana Kahounová and Eva Slabáková and Lucia Binó and Ján Remšík and Radek Fedr and Jan Bouchal and Daniela Kurfűrstová and Radek Vrtěl and Vladimír Študent and Lucie Jurečková and Volodymyr Porokh and Aleš Hampl and Karel Souček},
doi = {10.1016/j.scr.2018.11.006},
issn = {1876-7753 1873-5061},
year = {2018},
date = {2018-12-01},
journal = {Stem cell research},
volume = {33},
pages = {255–259},
abstract = {A human induced pluripotent stem cell line was generated from cancer-associated fibroblasts of a 68-years old patient with diagnosed prostate adenocarcinoma (PCa). The fibroblast cell line was reprogrammed with Epi5™ Episomal iPSC Reprogramming Kit. Pluripotency of the derived transgene-free iPS cell line was confirmed both in vitro by detecting expression of factors of pluripotency on a single-cell level, and also in vivo using teratoma formation assay. This new iPS cell line may be used for differentiation into different prostate-specific cell types in differentiation studies.},
note = {Place: England},
keywords = {Aged, Cancer-Associated Fibroblasts/*metabolism, Fibroblasts/*metabolism, Humans, Induced Pluripotent Stem Cells/*metabolism, Male, Prostatic Neoplasms/*genetics},
pubstate = {published},
tppubtype = {article}
}
Remšík, Ján; Binó, Lucia; Kahounová, Zuzana; Kharaishvili, Gvantsa; Šimecková, Šárka; Fedr, Radek; Kucírková, Tereza; Lenárt, Sára; Muresan, Ximena Maria; Slabáková, Eva; Knopfová, Lucia; Bouchal, Jan; Král, Milan; Beneš, Petr; Soucek, Karel
Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition. Journal Article
In: Carcinogenesis, vol. 39, no. 11, pp. 1411–1418, 2018, ISSN: 1460-2180 0143-3334, (Place: England).
Abstract | Links | BibTeX | Tags: Animals, Antigens, Breast Neoplasms/mortality/*pathology, Cadherins/biosynthesis, Carcinoma/*pathology, CD/biosynthesis, Cell Adhesion Molecules/genetics/*metabolism, Cell Line, Disease Progression, DNA Methylation/genetics, Epithelial Cells/*metabolism, Epithelial-Mesenchymal Transition/physiology, Female, Humans, Inbred BALB C, Male, Mice, Neoplasm/genetics/*metabolism, Prostatic Neoplasms/mortality/*pathology, Tumor, Xenograft Model Antitumor Assays
@article{remsik_trop-2_2018,
title = {Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition.},
author = {Ján Remšík and Lucia Binó and Zuzana Kahounová and Gvantsa Kharaishvili and Šárka Šimecková and Radek Fedr and Tereza Kucírková and Sára Lenárt and Ximena Maria Muresan and Eva Slabáková and Lucia Knopfová and Jan Bouchal and Milan Král and Petr Beneš and Karel Soucek},
doi = {10.1093/carcin/bgy095},
issn = {1460-2180 0143-3334},
year = {2018},
date = {2018-12-01},
journal = {Carcinogenesis},
volume = {39},
number = {11},
pages = {1411–1418},
abstract = {The cell surface glycoprotein Trop-2 is commonly overexpressed in carcinomas and represents an exceptional antigen for targeted therapy. Here, we provide evidence that surface Trop-2 expression is functionally connected with an epithelial phenotype in breast and prostate cell lines and in patient tumor samples. We further show that Trop-2 expression is suppressed epigenetically or through the action of epithelial-to-mesenchymal transition transcription factors and that deregulation of Trop-2 expression is linked with cancer progression and poor patient prognosis. Moreover, our data suggest that the cancer plasticity-driven intratumoral heterogeneity in Trop-2 expression may significantly contribute to response and resistance to therapies targeting Trop-2-expressing cells.},
note = {Place: England},
keywords = {Animals, Antigens, Breast Neoplasms/mortality/*pathology, Cadherins/biosynthesis, Carcinoma/*pathology, CD/biosynthesis, Cell Adhesion Molecules/genetics/*metabolism, Cell Line, Disease Progression, DNA Methylation/genetics, Epithelial Cells/*metabolism, Epithelial-Mesenchymal Transition/physiology, Female, Humans, Inbred BALB C, Male, Mice, Neoplasm/genetics/*metabolism, Prostatic Neoplasms/mortality/*pathology, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Hýžd'alová, Martina; Pivnicka, Jakub; Zapletal, Ondrej; Vázquez-Gómez, Gerardo; Matthews, Jason; Neca, Jirí; Pencíková, Katerina; Machala, Miroslav; Vondrácek, Jan
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 165, no. 2, pp. 447–461, 2018, ISSN: 1096-0929 1096-6080, (Place: United States).
Abstract | Links | BibTeX | Tags: Aryl Hydrocarbon/genetics/*metabolism, Cell Culture Techniques, Cell Cycle/drug effects/genetics, Cell Proliferation/*drug effects/genetics, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1/genetics/metabolism, Endocrine Disruptors/metabolism/*toxicity, Estrogen/genetics/metabolism, Gene Expression/drug effects, Gene Knockdown Techniques, Genes, Genetic Vectors, Humans, MCF-7 Cells, Plasmids, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter, Transfection
@article{hyzdalova_aryl_2018,
title = {Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation.},
author = {Martina Hýžd'alová and Jakub Pivnicka and Ondrej Zapletal and Gerardo Vázquez-Gómez and Jason Matthews and Jirí Neca and Katerina Pencíková and Miroslav Machala and Jan Vondrácek},
doi = {10.1093/toxsci/kfy153},
issn = {1096-0929 1096-6080},
year = {2018},
date = {2018-10-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {165},
number = {2},
pages = {447–461},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that interact in a complex manner with both the aryl hydrocarbon receptor (AhR) and estrogen receptors (ER). Their potential endocrine-disrupting activities may depend on both inhibitory AhR-ER cross-talk and on AhR-dependent metabolic production of estrogenic PAH metabolites. Here, we analyzed the impact of AhR on estrogen-like effects of PAHs, such as benzo[a]pyrene (BaP), in particular, on control of cell cycle progression/cell proliferation. Using AhR knockout variant of estrogen-sensitive human breast cancer MCF-7 cells (MCF-7 AhRKO cells), we observed that the AhR-dependent control of cytochrome P450 family 1 (CYP1) expression played a major role in formation of estrogenic BaP metabolites, most notably 3-OH-BaP, which contributed to the ER-dependent induction of cell cycle progression/cell proliferation. Both BaP metabolism and the BaP-induced S-phase transition/cell proliferation were inhibited in MCF-7 AhRKO cells, whereas these cells remained sensitive towards both endogenous estrogen 17β-estradiol or hydroxylated BaP metabolites. BaP was found to increase the activity of ER-dependent luciferase reporter gene in wild-type MCF-7 cells; however, unlike its hydroxylated metabolite, BaP failed to stimulate luciferase activity in MCF-7 AhRKO cells. Similarly, estrogen-like effects of other known estrogenic PAHs, such as benz[a]anthracene or 3-methylcholanthrene, were diminished in MCF-7 AhRKO cells. Ectopic expression of human CYP1A1 and CYP1B1 enzymes partly restored both BaP metabolism and its effects on cell proliferation. Taken together, our data suggest that the AhR-dependent metabolism of PAHs contributes significantly to the impact of PAHs on cell proliferation in estrogen-sensitive cells.},
note = {Place: United States},
keywords = {Aryl Hydrocarbon/genetics/*metabolism, Cell Culture Techniques, Cell Cycle/drug effects/genetics, Cell Proliferation/*drug effects/genetics, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1/genetics/metabolism, Endocrine Disruptors/metabolism/*toxicity, Estrogen/genetics/metabolism, Gene Expression/drug effects, Gene Knockdown Techniques, Genes, Genetic Vectors, Humans, MCF-7 Cells, Plasmids, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter, Transfection},
pubstate = {published},
tppubtype = {article}
}