2009
Maioli, Emanuela; Greci, Lucedio; Soucek, Karel; Hyzdalova, Martina; Pecorelli, Alessandra; Fortino, Vittoria; Valacchi, Giuseppe
Rottlerin inhibits ROS formation and prevents NFkappaB activation in MCF-7 and HT-29 cells. Journal Article
In: Journal of biomedicine & biotechnology, vol. 2009, pp. 742936, 2009, ISSN: 1110-7251 1110-7243, (Place: United States).
Abstract | Links | BibTeX | Tags: Acetophenones/chemistry/*pharmacology, Benzopyrans/chemistry/*pharmacology, Biphenyl Compounds/metabolism, Cell Nucleus/drug effects/metabolism, DNA/metabolism, Electron Spin Resonance Spectroscopy, Free Radical Scavengers/pharmacology, Genetic/drug effects, HT29 Cells, Humans, Hydrogen Peroxide/metabolism, Intracellular Space/drug effects/metabolism, NF-kappa B/*metabolism, Picrates/metabolism, Protein Binding/drug effects, Protein Transport/drug effects, Reactive Oxygen Species/*metabolism, Spectrophotometry, Transcription, Transfection, Tumor Necrosis Factor-alpha/pharmacology, Ultraviolet
@article{maioli_rottlerin_2009,
title = {Rottlerin inhibits ROS formation and prevents NFkappaB activation in MCF-7 and HT-29 cells.},
author = {Emanuela Maioli and Lucedio Greci and Karel Soucek and Martina Hyzdalova and Alessandra Pecorelli and Vittoria Fortino and Giuseppe Valacchi},
doi = {10.1155/2009/742936},
issn = {1110-7251 1110-7243},
year = {2009},
date = {2009-01-01},
journal = {Journal of biomedicine & biotechnology},
volume = {2009},
pages = {742936},
abstract = {Rottlerin, a polyphenol isolated from Mallotus Philippinensis, has been recently used as a selective inhibitor of PKC delta, although it can inhibit many kinases and has several biological effects. Among them, we recently found that Rottlerin inhibits the Nuclear Factor kappaB (NFkappaB), activated by either phorbol esters or H(2)O(2). Because of the redox sensitivity of NFkappaB and on the basis of Rottlerin antioxidant property, we hypothesized that Rottlerin could prevent NFkappaB activation acting as a free radicals scavenger, as other natural polyphenols. The current study confirms the antioxidant property of Rottlerin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in vitro and against oxidative stress induced by H(2)O(2) and by menadione in culture cells. We also demonstrate that Rottlerin prevents TNFalpha-dependent NFkappaB activation in MCF-7 cells and in HT-29 cells transfected with the NFkappaB-driven plasmid pBIIX-LUC, suggesting that Rottlerin can inhibit NFkappaB via several pathways and in several cell types.},
note = {Place: United States},
keywords = {Acetophenones/chemistry/*pharmacology, Benzopyrans/chemistry/*pharmacology, Biphenyl Compounds/metabolism, Cell Nucleus/drug effects/metabolism, DNA/metabolism, Electron Spin Resonance Spectroscopy, Free Radical Scavengers/pharmacology, Genetic/drug effects, HT29 Cells, Humans, Hydrogen Peroxide/metabolism, Intracellular Space/drug effects/metabolism, NF-kappa B/*metabolism, Picrates/metabolism, Protein Binding/drug effects, Protein Transport/drug effects, Reactive Oxygen Species/*metabolism, Spectrophotometry, Transcription, Transfection, Tumor Necrosis Factor-alpha/pharmacology, Ultraviolet},
pubstate = {published},
tppubtype = {article}
}