2009
Lincová, Eva; Hampl, Ales; Pernicová, Zuzana; Starsíchová, Andrea; Krcmár, Pavel; Machala, Miroslav; Kozubík, Alois; Soucek, Karel
In: Biochemical pharmacology, vol. 78, no. 6, pp. 561–572, 2009, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: Anti-Inflammatory Agents, Antineoplastic Agents/pharmacology, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/physiology, Cell Line, Cyclin-Dependent Kinase Inhibitor p21/*biosynthesis, Enzyme Induction, Epithelial Cells/*drug effects/pathology, Extracellular Signal-Regulated MAP Kinases/metabolism, Gene Expression/drug effects, Growth Differentiation Factor 15/biosynthesis, Humans, Indomethacin/pharmacology, Male, Non-Steroidal/*pharmacology, Phosphatidylinositol 3-Kinases, Prostatic Neoplasms/*pathology, Proto-Oncogene Proteins c-akt/*metabolism, RNA Interference, Signal Transduction/drug effects/physiology, Tumor, Tumor Suppressor Protein p53/genetics/*metabolism
@article{lincova_multiple_2009,
title = {Multiple defects in negative regulation of the PKB/Akt pathway sensitise human cancer cells to the antiproliferative effect of non-steroidal anti-inflammatory drugs.},
author = {Eva Lincová and Ales Hampl and Zuzana Pernicová and Andrea Starsíchová and Pavel Krcmár and Miroslav Machala and Alois Kozubík and Karel Soucek},
doi = {10.1016/j.bcp.2009.05.001},
issn = {1873-2968 0006-2952},
year = {2009},
date = {2009-09-01},
journal = {Biochemical pharmacology},
volume = {78},
number = {6},
pages = {561–572},
abstract = {Antitumorigenic effects of non-steroidal anti-inflammatory drugs (NSAIDs) are well established in several types of cancer disease. However, the mechanisms driving these processes are not understood in all details. In our study, we observed significant differences in sensitivity of cancer epithelial cell lines to COX-independent antiproliferative effects of NSAIDs. The prostate cancer cell line LNCaP, lacking both critical enzymes in the negative control of PKB/Akt activation, PTEN and SHIP2, was the most sensitive to these effects, as assessed by analysing the cell cycle profile and expression of cell cycle regulating proteins. We found that p53 protein and its signalling pathway is not involved in early antiproliferative action of the selected NSAID-indomethacin. RNAi provided evidence for the involvement of p21(Cip1/Waf1), but not GDF-15, in antiproliferative effects of indomethacin in LNCaP cells. Interestingly, we also found that indomethacin activated PKB/Akt and induced nuclear localisation of p21(Cip1/Waf1) and Akt2 isoform. Our results are in agreement with other studies and suggest that maintaining of the p21(Cip1/Waf1) level and its intracellular localisation might be influenced by Akt2. Knock-down of SHIP2 by RNAi in PTEN negative prostate and colon cancer cell lines resulted in higher sensitivity to antiproliferative effects of indomethacin. Our data suggest novel mechanisms of NSAIDs antiproliferative action in cancer epithelial cells, which depends on the status of negative regulation of the PKB/Akt pathway and the isoform-specific action of Akt2. Thus, unexpectedly, multiple defects in negative regulation of the PKB/Akt pathway may contribute to increased sensitivity to chemopreventive effects of these widely used drugs.},
note = {Place: England},
keywords = {Anti-Inflammatory Agents, Antineoplastic Agents/pharmacology, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/physiology, Cell Line, Cyclin-Dependent Kinase Inhibitor p21/*biosynthesis, Enzyme Induction, Epithelial Cells/*drug effects/pathology, Extracellular Signal-Regulated MAP Kinases/metabolism, Gene Expression/drug effects, Growth Differentiation Factor 15/biosynthesis, Humans, Indomethacin/pharmacology, Male, Non-Steroidal/*pharmacology, Phosphatidylinositol 3-Kinases, Prostatic Neoplasms/*pathology, Proto-Oncogene Proteins c-akt/*metabolism, RNA Interference, Signal Transduction/drug effects/physiology, Tumor, Tumor Suppressor Protein p53/genetics/*metabolism},
pubstate = {published},
tppubtype = {article}
}
2008
Marvanová, Sona; Vondrácek, Jan; Penccíková, Katerrina; Trilecová, Lenka; Krcmárr, Pavel; Topinka, Jan; Nováková, Zuzana; Milcová, Alena; Machala, Miroslav
Toxic effects of methylated benz[a]anthracenes in liver cells. Journal Article
In: Chemical research in toxicology, vol. 21, no. 2, pp. 503–512, 2008, ISSN: 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: 10-Dimethyl-1, 2-benzanthracene/chemistry/metabolism/toxicity, 9, Animals, Apoptosis/drug effects, Benz(a)Anthracenes/chemistry/metabolism/*toxicity, Carcinoma, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 Enzyme System/genetics/metabolism, DNA Adducts/analysis/metabolism, DNA/drug effects/metabolism, Dose-Response Relationship, Drug, Enzyme Induction, Enzymologic/drug effects, Gap Junctions/drug effects, Gene Expression Regulation, Genes, Hepatocellular, Hepatocytes/*drug effects/metabolism/pathology, Inbred F344, Liver Neoplasms, Messenger/metabolism, Methylation, Rats, Reporter/drug effects, RNA, Stem Cells/*drug effects/metabolism/pathology, Tumor
@article{marvanova_toxic_2008,
title = {Toxic effects of methylated benz[a]anthracenes in liver cells.},
author = {Sona Marvanová and Jan Vondrácek and Katerrina Penccíková and Lenka Trilecová and Pavel Krcmárr and Jan Topinka and Zuzana Nováková and Alena Milcová and Miroslav Machala},
doi = {10.1021/tx700305x},
issn = {0893-228X},
year = {2008},
date = {2008-02-01},
journal = {Chemical research in toxicology},
volume = {21},
number = {2},
pages = {503–512},
abstract = {Monomethylated benz[ a]anthracenes (MeBaAs) are an important group of methylated derivatives of polycyclic aromatic hydrocarbons (PAHs). Although the methyl substitution reportedly affects their mutagenicity and tumor-initiating activity, little is known about the impact of methylation on the effects associated with activation of the aryl hydrocarbon receptor (AhR)-dependent gene expression and/or toxic events associated with tumor promotion. In the present study, we studied the effects of a series of MeBaAs on the above-mentioned end points in rat liver cell lines and compared them with the effects of benz[ a]anthracene (BaA) and the potent carcinogen 7,12-dimethylbenz[ a]anthracene (DMBA). Methyl substitution enhanced the AhR-mediated activity of BaA derivatives determined in a reporter gene assay, as the induction equivalency factors (IEFs) of all MeBaAs were higher than that of BaA. IEFs of 6-MeBaA and 9-MeBaA, two of the most potent MeBaAs, were more than two orders of magnitude higher than the IEF of BaA. Correspondingly, all MeBaAs induced higher levels of cytochrome P450 1A1 mRNA. Both BaA and MeBaAs had similar effects on the expression of cytochrome P450 1B1 or aldo-keto reductase 1C9 in rat liver epithelial WB-F344 cells. In contrast to genotoxic DMBA, MeBaAs induced low DNA adduct formation. Only 10-MeBaA induced apoptosis and accumulation of phosphorylated p53, which could be associated with the induction of oxidative stress, similar to DMBA. With the exception of 10-MeBaA, all MeBaAs induced cell proliferation in contact-inhibited WB-F344 cells, which corresponded with their ability to activate AhR. 1-, 2-, 8-, 10-, 11-, and 12-MeBaA inhibited gap junctional intercellular communication (GJIC) in WB-F344 cells. This mode of action, like disruption of cell proliferation control, might contribute to tumor promotion. Taken together, these data showed that the methyl substitution significantly influences those effects of MeBaAs associated with AhR activation or GJIC inhibition.},
note = {Place: United States},
keywords = {10-Dimethyl-1, 2-benzanthracene/chemistry/metabolism/toxicity, 9, Animals, Apoptosis/drug effects, Benz(a)Anthracenes/chemistry/metabolism/*toxicity, Carcinoma, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 Enzyme System/genetics/metabolism, DNA Adducts/analysis/metabolism, DNA/drug effects/metabolism, Dose-Response Relationship, Drug, Enzyme Induction, Enzymologic/drug effects, Gap Junctions/drug effects, Gene Expression Regulation, Genes, Hepatocellular, Hepatocytes/*drug effects/metabolism/pathology, Inbred F344, Liver Neoplasms, Messenger/metabolism, Methylation, Rats, Reporter/drug effects, RNA, Stem Cells/*drug effects/metabolism/pathology, Tumor},
pubstate = {published},
tppubtype = {article}
}