2009
Valovicová, Zuzana; Marvanová, Sona; Mészárosová, Monika; Srancíková, Annamária; Trilecová, Lenka; Milcová, Alena; Líbalová, Helena; Vondrácek, Jan; Machala, Miroslav; Topinka, Jan; Gábelová, Alena
In: Mutation research, vol. 665, no. 1-2, pp. 51–60, 2009, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *DNA Damage, *DNA Repair, Animals, Biological, Carbazoles/*toxicity, Carcinogens/*toxicity, Cell Line, DNA Adducts/metabolism, Experimental/chemically induced, Histones/metabolism, Kinetics, Liver Neoplasms, Liver/cytology/*drug effects/*metabolism, Models, Mutagens/toxicity, Oxidative Stress/drug effects, Rats, Sarcoma, Stem Cells/cytology/*drug effects/*metabolism
@article{valovicova_differences_2009,
title = {Differences in DNA damage and repair produced by systemic, hepatocarcinogenic and sarcomagenic dibenzocarbazole derivatives in a model of rat liver progenitor cells.},
author = {Zuzana Valovicová and Sona Marvanová and Monika Mészárosová and Annamária Srancíková and Lenka Trilecová and Alena Milcová and Helena Líbalová and Jan Vondrácek and Miroslav Machala and Jan Topinka and Alena Gábelová},
doi = {10.1016/j.mrfmmm.2009.02.014},
issn = {0027-5107},
year = {2009},
date = {2009-06-01},
journal = {Mutation research},
volume = {665},
number = {1-2},
pages = {51–60},
abstract = {Liver progenitor (oval) cells are a potential target cell population for hepatocarcinogens. Our recent study showed that the liver carcinogens 7H-dibenzo[c,g]carbazole (DBC) and 5,9-dimethyldibenzo[c,g]carbazole (DiMeDBC), but not the sarcomagen N-methyldibenzo[c,g]carbazole (N-MeDBC), induced several cellular events associated with tumor promotion in WB-F344 cells, an in vitro model of liver oval cells [J. Vondracek, L. Svihalkova-Sindlerova, K. Pencikova, P. Krcmar, Z. Andrysik, K. Chramostova, S. Marvanova, Z. Valovicova, A. Kozubik, A. Gabelova, M. Machala, 7H-Dibenzo[c,g]carbazole and 5,9-dimethyldibenzo[c,g]carbazole exert multiple toxic events contributing to tumor promotion in rat liver epithelial 'stem-like' cells, Mutat. Res. Fundam. Mol. Mech. Mutagen. 596 (2006) 43-56]. In this study, we focused on the genotoxic effects generated by these dibenzocarbazoles in WB-F344 cells to better understand the cellular and molecular mechanisms involved in hepatocarcinogenesis. Lower IC(50) values determined for DBC and DiMeDBC, as compared with N-MeDBC, indicated a higher sensitivity of WB-F344 cells towards hepatocarcinogens. Accordingly, DBC produced a dose-dependent DNA-adduct formation resulting in substantial inhibition of DNA replication and transcription. In contrast, DNA-adduct number detected in DiMeDBC-exposed cells was almost negligible, whereas N-MeDBC produced a low level of DNA adducts. Although all dibenzocarbazoles significantly increased the level of strand breaks (p<0.05) and micronuclei (p<0.001) after 2-h treatment, differences in the kinetics of strand break rejoining were found. The strand break level in DiMeDBC- and N-MeDBC-exposed cells returned to near the background level within 24h after treatment, whereas a relatively high DNA damage level was detected in DBC-treated cells up to 48h after exposure. Additional breaks detected after incubation of DiMeDBC-exposed WB-F344 cells with a repair-specific endonuclease, along with a nearly 3-fold higher level of reactive oxygen species found in these cells as compared with control, suggest a possible role of oxidative stress in DiMeDBC genotoxicity. We demonstrated qualitative differences in the DNA damage profiles produced by hepatocarcinogens DBC and DiMeDBC in WB-F344 cells. Different lesions may trigger distinct cellular pathways involved in hepatocarcinogenesis. The low amount of DNA damage, together with an efficient repair, may explain the lack of hepatocarcinogenicity of N-MeDBC.},
note = {Place: Netherlands},
keywords = {*DNA Damage, *DNA Repair, Animals, Biological, Carbazoles/*toxicity, Carcinogens/*toxicity, Cell Line, DNA Adducts/metabolism, Experimental/chemically induced, Histones/metabolism, Kinetics, Liver Neoplasms, Liver/cytology/*drug effects/*metabolism, Models, Mutagens/toxicity, Oxidative Stress/drug effects, Rats, Sarcoma, Stem Cells/cytology/*drug effects/*metabolism},
pubstate = {published},
tppubtype = {article}
}
2007
Andrysík, Zdenek; Vondrácek, Jan; Machala, Miroslav; Krcmár, Pavel; Svihálková-Sindlerová, Lenka; Kranz, Anne; Weiss, Carsten; Faust, Dagmar; Kozubík, Alois; Dietrich, Cornelia
In: Mutation research, vol. 615, no. 1-2, pp. 87–97, 2007, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/antagonists & inhibitors/genetics/*metabolism, Base Sequence, Benz(a)Anthracenes/toxicity, Benzo(a)pyrene/toxicity, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/*physiology, Cell Line, Cell Proliferation/drug effects, Cyclin A/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cytochrome P-450 CYP1A1/genetics, Epithelial Cells/cytology/drug effects/metabolism, Fluorenes/toxicity, Gene Expression/drug effects, Hepatocytes/cytology/*drug effects/*metabolism, Messenger/genetics/metabolism, Multiprotein Complexes, Mutagens/toxicity, Mutation, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, RNA, Small Interfering/genetics
@article{andrysik_aryl_2007,
title = {The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells.},
author = {Zdenek Andrysík and Jan Vondrácek and Miroslav Machala and Pavel Krcmár and Lenka Svihálková-Sindlerová and Anne Kranz and Carsten Weiss and Dagmar Faust and Alois Kozubík and Cornelia Dietrich},
doi = {10.1016/j.mrfmmm.2006.10.004},
issn = {0027-5107},
year = {2007},
date = {2007-02-01},
journal = {Mutation research},
volume = {615},
number = {1-2},
pages = {87–97},
abstract = {Disruption of cell proliferation control by polycyclic aromatic hydrocarbons (PAHs) may contribute to their carcinogenicity. We investigated role of the aryl hydrocarbon receptor (AhR) in disruption of contact inhibition in rat liver epithelial WB-F344 'stem-like' cells, induced by the weakly mutagenic benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF) and by the strongly mutagenic benzo[a]pyrene (BaP). There were significant differences between the effects of BaA and BbF, and those of the strongly genotoxic BaP. Both BaA and BbF increased percentage of cells entering S-phase and cell numbers, associated with an increased expression of Cyclin A and Cyclin A/cdk2 complex activity. Their effects were significantly reduced in cells expressing a dominant-negative AhR mutant (dnAhR). Roscovitine, a chemical inhibitor of cdk2, abolished the induction of cell proliferation by BbF. However, neither BaA nor BbF modulated expression of the principal cdk inhibitor involved in maintenance of contact inhibition, p27(Kip1), or pRb phosphorylation. The strongly mutagenic BaP induced apoptosis, a decrease in total cell numbers and significantly higher percentage of cells entering S-phase than either BaA or BbF. Given that BaP induced high levels of Cyclin A/cdk2 activity, downregulation of p27(Kip1) and hyperphosphorylation of pRb, the accumulation of cells in S-phase was probably due to cell proliferation, although S-phase arrest due to blocked replication forks can not be excluded. Both types of effects of BaP were significantly attenuated in dnAhR cells. Transfection of WB-F344 cells with siRNA targeted against AhR decreased induction of Cyclin A induced by BbF or BaP, further supporting the role of AhR in proliferative effects of PAHs. This suggest that activation of AhR plays a significant role both in disruption of contact inhibition by weakly mutagenic PAHs and in genotoxic effects of BaP possibly leading to enhanced cell proliferation. Thus, PAHs may increase proliferative rate and the likelihood of fixation of mutations.},
note = {Place: Netherlands},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/antagonists & inhibitors/genetics/*metabolism, Base Sequence, Benz(a)Anthracenes/toxicity, Benzo(a)pyrene/toxicity, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/*physiology, Cell Line, Cell Proliferation/drug effects, Cyclin A/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cytochrome P-450 CYP1A1/genetics, Epithelial Cells/cytology/drug effects/metabolism, Fluorenes/toxicity, Gene Expression/drug effects, Hepatocytes/cytology/*drug effects/*metabolism, Messenger/genetics/metabolism, Multiprotein Complexes, Mutagens/toxicity, Mutation, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, RNA, Small Interfering/genetics},
pubstate = {published},
tppubtype = {article}
}