2018
Verlande, Amandine; Krafčíková, Michaela; Potěšil, David; Trantírek, Lukáš; Zdráhal, Zbyněk; Elkalaf, Moustafa; Trnka, Jan; Souček, Karel; Rauch, Nora; Rauch, Jens; Kolch, Walter; Uldrijan, Stjepan
Metabolic stress regulates ERK activity by controlling KSR-RAF heterodimerization. Journal Article
In: EMBO reports, vol. 19, no. 2, pp. 320–336, 2018, ISSN: 1469-3178 1469-221X, (Place: England).
Abstract | Links | BibTeX | Tags: *Protein Multimerization, *Stress, 14-3-3 Proteins/chemistry/metabolism, cell cycle arrest, Cell Cycle Checkpoints/genetics, Cell Line, Cell Survival, Enzyme Activation, Extracellular Signal-Regulated MAP Kinases/*metabolism, Glucose/metabolism, Glycolysis, GTP Phosphohydrolases/genetics/metabolism, Humans, Melanoma, Melanoma/genetics/metabolism, Membrane Proteins/genetics/metabolism, metabolic stress, Mutation, Oxygen Consumption, Physiological, Protein Kinases/chemistry/genetics/*metabolism, raf Kinases/chemistry/genetics/*metabolism, RAF‐ERK signaling, Recombinant Fusion Proteins, Tumor
@article{verlande_metabolic_2018,
title = {Metabolic stress regulates ERK activity by controlling KSR-RAF heterodimerization.},
author = {Amandine Verlande and Michaela Krafčíková and David Potěšil and Lukáš Trantírek and Zbyněk Zdráhal and Moustafa Elkalaf and Jan Trnka and Karel Souček and Nora Rauch and Jens Rauch and Walter Kolch and Stjepan Uldrijan},
doi = {10.15252/embr.201744524},
issn = {1469-3178 1469-221X},
year = {2018},
date = {2018-02-01},
journal = {EMBO reports},
volume = {19},
number = {2},
pages = {320–336},
abstract = {Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS-mutant cells, and with oncogenic BRAF in BRAF(V600E)-mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS-mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAF(V600E)-mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.},
note = {Place: England},
keywords = {*Protein Multimerization, *Stress, 14-3-3 Proteins/chemistry/metabolism, cell cycle arrest, Cell Cycle Checkpoints/genetics, Cell Line, Cell Survival, Enzyme Activation, Extracellular Signal-Regulated MAP Kinases/*metabolism, Glucose/metabolism, Glycolysis, GTP Phosphohydrolases/genetics/metabolism, Humans, Melanoma, Melanoma/genetics/metabolism, Membrane Proteins/genetics/metabolism, metabolic stress, Mutation, Oxygen Consumption, Physiological, Protein Kinases/chemistry/genetics/*metabolism, raf Kinases/chemistry/genetics/*metabolism, RAF‐ERK signaling, Recombinant Fusion Proteins, Tumor},
pubstate = {published},
tppubtype = {article}
}
2007
Andrysík, Zdenek; Vondrácek, Jan; Machala, Miroslav; Krcmár, Pavel; Svihálková-Sindlerová, Lenka; Kranz, Anne; Weiss, Carsten; Faust, Dagmar; Kozubík, Alois; Dietrich, Cornelia
In: Mutation research, vol. 615, no. 1-2, pp. 87–97, 2007, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/antagonists & inhibitors/genetics/*metabolism, Base Sequence, Benz(a)Anthracenes/toxicity, Benzo(a)pyrene/toxicity, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/*physiology, Cell Line, Cell Proliferation/drug effects, Cyclin A/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cytochrome P-450 CYP1A1/genetics, Epithelial Cells/cytology/drug effects/metabolism, Fluorenes/toxicity, Gene Expression/drug effects, Hepatocytes/cytology/*drug effects/*metabolism, Messenger/genetics/metabolism, Multiprotein Complexes, Mutagens/toxicity, Mutation, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, RNA, Small Interfering/genetics
@article{andrysik_aryl_2007,
title = {The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells.},
author = {Zdenek Andrysík and Jan Vondrácek and Miroslav Machala and Pavel Krcmár and Lenka Svihálková-Sindlerová and Anne Kranz and Carsten Weiss and Dagmar Faust and Alois Kozubík and Cornelia Dietrich},
doi = {10.1016/j.mrfmmm.2006.10.004},
issn = {0027-5107},
year = {2007},
date = {2007-02-01},
journal = {Mutation research},
volume = {615},
number = {1-2},
pages = {87–97},
abstract = {Disruption of cell proliferation control by polycyclic aromatic hydrocarbons (PAHs) may contribute to their carcinogenicity. We investigated role of the aryl hydrocarbon receptor (AhR) in disruption of contact inhibition in rat liver epithelial WB-F344 'stem-like' cells, induced by the weakly mutagenic benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF) and by the strongly mutagenic benzo[a]pyrene (BaP). There were significant differences between the effects of BaA and BbF, and those of the strongly genotoxic BaP. Both BaA and BbF increased percentage of cells entering S-phase and cell numbers, associated with an increased expression of Cyclin A and Cyclin A/cdk2 complex activity. Their effects were significantly reduced in cells expressing a dominant-negative AhR mutant (dnAhR). Roscovitine, a chemical inhibitor of cdk2, abolished the induction of cell proliferation by BbF. However, neither BaA nor BbF modulated expression of the principal cdk inhibitor involved in maintenance of contact inhibition, p27(Kip1), or pRb phosphorylation. The strongly mutagenic BaP induced apoptosis, a decrease in total cell numbers and significantly higher percentage of cells entering S-phase than either BaA or BbF. Given that BaP induced high levels of Cyclin A/cdk2 activity, downregulation of p27(Kip1) and hyperphosphorylation of pRb, the accumulation of cells in S-phase was probably due to cell proliferation, although S-phase arrest due to blocked replication forks can not be excluded. Both types of effects of BaP were significantly attenuated in dnAhR cells. Transfection of WB-F344 cells with siRNA targeted against AhR decreased induction of Cyclin A induced by BbF or BaP, further supporting the role of AhR in proliferative effects of PAHs. This suggest that activation of AhR plays a significant role both in disruption of contact inhibition by weakly mutagenic PAHs and in genotoxic effects of BaP possibly leading to enhanced cell proliferation. Thus, PAHs may increase proliferative rate and the likelihood of fixation of mutations.},
note = {Place: Netherlands},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/antagonists & inhibitors/genetics/*metabolism, Base Sequence, Benz(a)Anthracenes/toxicity, Benzo(a)pyrene/toxicity, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/*physiology, Cell Line, Cell Proliferation/drug effects, Cyclin A/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cytochrome P-450 CYP1A1/genetics, Epithelial Cells/cytology/drug effects/metabolism, Fluorenes/toxicity, Gene Expression/drug effects, Hepatocytes/cytology/*drug effects/*metabolism, Messenger/genetics/metabolism, Multiprotein Complexes, Mutagens/toxicity, Mutation, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, RNA, Small Interfering/genetics},
pubstate = {published},
tppubtype = {article}
}