2002
Vaculová, Alena; Hofmanova, Jirina; Soucek, Karel; Kovariková, Martina; Kozubík, Alois
Tumor necrosis factor-alpha induces apoptosis associated with poly(ADP-ribose) polymerase cleavage in HT-29 colon cancer cells. Journal Article
In: Anticancer research, vol. 22, no. 3, pp. 1635–1639, 2002, ISSN: 0250-7005, (Place: Greece).
Abstract | BibTeX | Tags: Apoptosis/*drug effects, Caspase 3, Caspases/metabolism, Cell Death/drug effects, Cell Division/drug effects, HT29 Cells/*drug effects/enzymology/pathology, Humans, Kinetics, Poly(ADP-ribose) Polymerases/*metabolism, Reactive Oxygen Species/metabolism, Tumor Necrosis Factor-alpha/*pharmacology
@article{vaculova_tumor_2002,
title = {Tumor necrosis factor-alpha induces apoptosis associated with poly(ADP-ribose) polymerase cleavage in HT-29 colon cancer cells.},
author = {Alena Vaculová and Jirina Hofmanova and Karel Soucek and Martina Kovariková and Alois Kozubík},
issn = {0250-7005},
year = {2002},
date = {2002-06-01},
journal = {Anticancer research},
volume = {22},
number = {3},
pages = {1635–1639},
abstract = {BACKGROUND: Tumor necrosis factor-alpha (TNF-alpha) is known for its selective cytotoxic activity on tumour cells. We analysed the response of HT-29 human colon carcinoma cells to this cytokine. MATERIALS AND METHODS: After TNF-alpha treatment, cell proliferation, cell cycle, reactive oxygen species (ROS) production (flow cytometry), the amount of apoptotic cells (flow cytometry, fluorescence microscopy), cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3 activity (Western blotting) were detected. RESULTS: TNF-alpha induced a decrease of cell growth and viability, an accumulation of cells in the S-phase of the cell cycle, an increase of subdiploid cell population and nuclear chromatin condensation and fragmentation, but not sooner than 96-120 hours. However, earlier events characteristic of apoptosis occurred, such as caspase-3 activation, PARP cleavage to 89 kDa fragment and changes in ROS production. CONCLUSION: We demonstrated that, in addition to being an early marker of apoptosis, activation of caspase-3 and degradation of PARP may play a causative role in HT-29 cell death induced by TNF-alpha.},
note = {Place: Greece},
keywords = {Apoptosis/*drug effects, Caspase 3, Caspases/metabolism, Cell Death/drug effects, Cell Division/drug effects, HT29 Cells/*drug effects/enzymology/pathology, Humans, Kinetics, Poly(ADP-ribose) Polymerases/*metabolism, Reactive Oxygen Species/metabolism, Tumor Necrosis Factor-alpha/*pharmacology},
pubstate = {published},
tppubtype = {article}
}
BACKGROUND: Tumor necrosis factor-alpha (TNF-alpha) is known for its selective cytotoxic activity on tumour cells. We analysed the response of HT-29 human colon carcinoma cells to this cytokine. MATERIALS AND METHODS: After TNF-alpha treatment, cell proliferation, cell cycle, reactive oxygen species (ROS) production (flow cytometry), the amount of apoptotic cells (flow cytometry, fluorescence microscopy), cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3 activity (Western blotting) were detected. RESULTS: TNF-alpha induced a decrease of cell growth and viability, an accumulation of cells in the S-phase of the cell cycle, an increase of subdiploid cell population and nuclear chromatin condensation and fragmentation, but not sooner than 96-120 hours. However, earlier events characteristic of apoptosis occurred, such as caspase-3 activation, PARP cleavage to 89 kDa fragment and changes in ROS production. CONCLUSION: We demonstrated that, in addition to being an early marker of apoptosis, activation of caspase-3 and degradation of PARP may play a causative role in HT-29 cell death induced by TNF-alpha.