2024
Hýžďalová, Martina; Procházková, Jiřina; Straková, Nicol; Pěnčíková, Kateřina; Strapáčová, Simona; Slováčková, Jana; Kajabová, Simona; Líbalová, Helena; Topinka, Jan; Kabátková, Markéta; Vondráček, Jan; Mollerup, Steen; Machala, Miroslav
In: Environmental toxicology and pharmacology, vol. 107, pp. 104424, 2024, ISSN: 1872-7077 1382-6689, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Benzo(a)pyrene/toxicity, *Epithelial Cells/metabolism, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/metabolism, Benzo[a]pyrene, DNA Damage, Epithelial-Mesenchymal Transition, Human bronchial epithelial cells, Humans, Ligands, Receptors
@article{hyzdalova_transcriptional_2024,
title = {Transcriptional and phenotypical alterations associated with a gradual benzo[a]pyrene-induced transition of human bronchial epithelial cells into mesenchymal-like cells.},
author = {Martina Hýžďalová and Jiřina Procházková and Nicol Straková and Kateřina Pěnčíková and Simona Strapáčová and Jana Slováčková and Simona Kajabová and Helena Líbalová and Jan Topinka and Markéta Kabátková and Jan Vondráček and Steen Mollerup and Miroslav Machala},
doi = {10.1016/j.etap.2024.104424},
issn = {1872-7077 1382-6689},
year = {2024},
date = {2024-04-01},
journal = {Environmental toxicology and pharmacology},
volume = {107},
pages = {104424},
abstract = {The role of benzo[a]pyrene (BaP), a prominent genotoxic carcinogen and aryl hydrocarbon receptor (AhR) ligand, in tumor progression remains poorly characterized. We investigated the impact of BaP on the process of epithelial-mesenchymal transition (EMT) in normal human bronchial epithelial HBEC-12KT cells. Early morphological changes after 2-week exposure were accompanied with induction of SERPINB2, IL1, CDKN1A/p21 (linked with cell cycle delay) and chemokine CXCL5. After 8-week exposure, induction of cell migration and EMT-related pattern of markers/regulators led to induction of further pro-inflammatory cytokines or non-canonical Wnt pathway ligand WNT5A. This trend of up-regulation of pro-inflammatory genes and non-canonical Wnt pathway constituents was observed also in the BaP-transformed HBEC-12KT-B1 cells. In general, transcriptional effects of BaP differed from those of TGFβ1, a prototypical EMT inducer, or a model non-genotoxic AhR ligand, TCDD. Carcinogenic polycyclic aromatic hydrocarbons could thus induce a unique set of molecular changes linked with EMT and cancer progression.},
note = {Place: Netherlands},
keywords = {*Benzo(a)pyrene/toxicity, *Epithelial Cells/metabolism, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/metabolism, Benzo[a]pyrene, DNA Damage, Epithelial-Mesenchymal Transition, Human bronchial epithelial cells, Humans, Ligands, Receptors},
pubstate = {published},
tppubtype = {article}
}
2023
Holme, Jørn A.; Vondráček, Jan; Machala, Miroslav; Lagadic-Gossmann, Dominique; Vogel, Christoph F. A.; Ferrec, Eric Le; Sparfel, Lydie; Øvrevik, Johan
In: Biochemical pharmacology, vol. 216, pp. 115801, 2023, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Air Pollutants/toxicity, *Lung Neoplasms/chemically induced/genetics, *Polycyclic Aromatic Hydrocarbons/toxicity, Air pollution, Aryl Hydrocarbon/genetics, Carcinogenesis, Diesel exhaust, Environmental Monitoring, Genotoxicity, Humans, Inflammation, Occupational exposure, Particulate Matter/toxicity, Receptors, Smoking, Tumor metastasis, Tumor microenvironment, Tumor promotion
@article{holme_lung_2023,
title = {Lung cancer associated with combustion particles and fine particulate matter (PM(2.5)) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR).},
author = {Jørn A. Holme and Jan Vondráček and Miroslav Machala and Dominique Lagadic-Gossmann and Christoph F. A. Vogel and Eric Le Ferrec and Lydie Sparfel and Johan Øvrevik},
doi = {10.1016/j.bcp.2023.115801},
issn = {1873-2968 0006-2952},
year = {2023},
date = {2023-10-01},
journal = {Biochemical pharmacology},
volume = {216},
pages = {115801},
abstract = {Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM(2.5)), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM(2.5) exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM(2.5) represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM(2.5), whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.},
note = {Place: England},
keywords = {*Air Pollutants/toxicity, *Lung Neoplasms/chemically induced/genetics, *Polycyclic Aromatic Hydrocarbons/toxicity, Air pollution, Aryl Hydrocarbon/genetics, Carcinogenesis, Diesel exhaust, Environmental Monitoring, Genotoxicity, Humans, Inflammation, Occupational exposure, Particulate Matter/toxicity, Receptors, Smoking, Tumor metastasis, Tumor microenvironment, Tumor promotion},
pubstate = {published},
tppubtype = {article}
}
Marvanová, Soňa; Pěnčíková, Kateřina; Pálková, Lenka; Ciganek, Miroslav; Petráš, Jiří; Lněničková, Anna; Vondráček, Jan; Machala, Miroslav
Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence. Journal Article
In: The Science of the total environment, vol. 879, pp. 162924, 2023, ISSN: 1879-1026 0048-9697, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Environmental Pollutants, *Heterocyclic Compounds, AhR activity, Airborne particulate matter, Animals, Aryl Hydrocarbon, Freshwater sediments, Gap junctional intercellular communication, Humans, Particulate Matter, Polycyclic aromatic sulfur heterocyclic compounds, Rats, Receptors, Thiophenes/toxicity/metabolism
@article{marvanova_benzobnaphthodthiophenes_2023,
title = {Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence.},
author = {Soňa Marvanová and Kateřina Pěnčíková and Lenka Pálková and Miroslav Ciganek and Jiří Petráš and Anna Lněničková and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.scitotenv.2023.162924},
issn = {1879-1026 0048-9697},
year = {2023},
date = {2023-06-01},
journal = {The Science of the total environment},
volume = {879},
pages = {162924},
abstract = {Polycyclic aromatic sulfur heterocyclic compounds (PASHs) belong among ubiquitous environmental pollutants; however, their toxic effects remain poorly understood. Here, we studied the aryl hydrocarbon receptor (AhR)-mediated activity of dibenzothiophene, benzo[b]naphtho[d]thiophenes, and naphthylbenzo[b]thiophenes, as well as their presence in two types of environmental matrices: river sediments collected from both rural and urban areas, and in airborne particulate matter (PM(2.5)) sampled in cities with different levels and sources of pollution. Benzo[b]naphtho[2,1-d]thiophene, benzo[b]naphtho[2,3-d]thiophene, 2,2-naphthylbenzo[b]thiophene, and 2,1-naphthylbenzo[b]thiophene were newly identified as efficient AhR agonists in both rat and human AhR-based reporter gene assays, with 2,2-naphthylbenzo[b]thiophene being the most potent compound identified in both species. Benzo[b]naphtho[1,2-d]thiophene and 3,2-naphthylbenzo[b]thiophene elicited AhR-mediated activity only in the rat liver cell model, while dibenzothiophene and 3,1-naphthylbenzo[b]thiophene were inactive in either cell type. Independently of their ability to activate the AhR, benzo[b]naphtho[1,2-d]thiophene, 2,1-naphthylbenzo[b]thiophene, 3,1-naphthylbenzo[b]thiophene, and 3,2-naphthylbenzo[b]thiophene inhibited gap junctional intercellular communication in a model of rat liver epithelial cells. Benzo[b]naphtho[d]thiophenes were dominant PASHs present in both PM(2.5) and sediment samples, with benzo[b]naphtho[2,1-d]thiophene being the most abundant one, followed by benzo[b]naphtho[2,3-d]thiophene. The levels of naphthylbenzo[b]thiophenes were mostly low or below detection limit. Benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[2,3-d]thiophene were identified as the most significant contributors to the AhR-mediated activity in the environmental samples evaluated in this study. Both induced nuclear translocation of the AhR, and they induced CYP1A1 expression in a time-dependent manner, suggesting that their AhR-mediated activity may depend on the rate of their intracellular metabolism. In conclusion, some PASHs could be significant contributors to the overall AhR-mediated toxicity of complex environmental samples suggesting that more attention should be paid to the potential health impacts of this group of environmental pollutants.},
note = {Place: Netherlands},
keywords = {*Environmental Pollutants, *Heterocyclic Compounds, AhR activity, Airborne particulate matter, Animals, Aryl Hydrocarbon, Freshwater sediments, Gap junctional intercellular communication, Humans, Particulate Matter, Polycyclic aromatic sulfur heterocyclic compounds, Rats, Receptors, Thiophenes/toxicity/metabolism},
pubstate = {published},
tppubtype = {article}
}
2022
Šimečková, Pavlína; Pěnčíková, Kateřina; Kováč, Ondrej; Slavík, Josef; Pařenicová, Martina; Vondráček, Jan; Machala, Miroslav
In: The Science of the total environment, vol. 815, pp. 151967, 2022, ISSN: 1879-1026 0048-9697, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Polycyclic Aromatic Hydrocarbons/toxicity, Aryl Hydrocarbon/genetics/metabolism, Benzo(a)pyrene, Cellular stress response, Cytoplasmic and Nuclear/genetics, Energy Metabolism, Humans, Nuclear receptors, Polycyclic aromatic hydrocarbons, Receptors, Signal Transduction, Sphingolipids, Xenobiotics
@article{simeckova_vitro_2022,
title = {In vitro profiling of toxic effects of environmental polycyclic aromatic hydrocarbons on nuclear receptor signaling, disruption of endogenous metabolism and induction of cellular stress.},
author = {Pavlína Šimečková and Kateřina Pěnčíková and Ondrej Kováč and Josef Slavík and Martina Pařenicová and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.scitotenv.2021.151967},
issn = {1879-1026 0048-9697},
year = {2022},
date = {2022-04-01},
journal = {The Science of the total environment},
volume = {815},
pages = {151967},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) may interact with multiple intracellular receptors and related signaling pathways. We comprehensively evaluated the toxicity profiles of six environmentally relevant PAHs differing in structure, genotoxicity and their ability to activate the aryl hydrocarbon receptor (AhR). We focused particularly on their impact on intracellular hormone-, xenobiotic- and lipid-sensing receptors, as well as on cellular stress markers, combining a battery of human reporter gene assays and qRT-PCR evaluation of endogenous gene expression in human hepatocyte-like HepaRG cells, with LC/MS-MS analysis of cellular sphingolipids. The effects of PAHs included: activation of estrogen receptor α (in case of fluoranthene (Fla), pyrene (Pyr), benz[a]anthracene (BaA), benzo[a]pyrene (BaP)), suppression of androgen receptor activity (Fla, BaA, BaP and benzo[k]fluoranthene (BkF)), enhancement of dexamethasone-induced glucocorticoid receptor activity (chrysene (Chry), BaA, and BaP), and potentiation of triiodothyronine-induced thyroid receptor α activity (all tested PAHs). PAHs also induced transcription of endogenous gene targets of constitutive androstane receptor (Fla, Pyr), or repression of target genes of pregnane X receptor and peroxisome proliferator-activated receptor α (in case of the AhR-activating PAHs - Chry, BaA, BaP, and BkF) in HepaRG cells. In the same cell model, the AhR agonists reduced the expression of glucose metabolism genes (PCK1, G6PC and PDK4), and they up-regulated levels of glucosylceramides, together with a concomitant induction of expression of UGCG, glucosylceramide synthesis enzyme. Finally, both BaP and BkF were found to induce expression of early stress and genotoxicity markers: ATF3, EGR1, GDF15, CDKN1A/p21, and GADD45A mRNAs, while BaP alone increased levels of IL-6 mRNA. Overall, whereas low-molecular-weight PAHs exerted significant effects on nuclear receptors (with CYP2B6 induction observed already at nanomolar concentrations), the AhR activation by 4-ring and 5-ring PAHs appeared to be a key mechanism underlying their impact on nuclear receptor signaling, endogenous metabolism and induction of early stress and genotoxicity markers.},
note = {Place: Netherlands},
keywords = {*Polycyclic Aromatic Hydrocarbons/toxicity, Aryl Hydrocarbon/genetics/metabolism, Benzo(a)pyrene, Cellular stress response, Cytoplasmic and Nuclear/genetics, Energy Metabolism, Humans, Nuclear receptors, Polycyclic aromatic hydrocarbons, Receptors, Signal Transduction, Sphingolipids, Xenobiotics},
pubstate = {published},
tppubtype = {article}
}
2021
Mickova, Alena; Kharaishvili, Gvantsa; Kurfurstova, Daniela; Gachechiladze, Mariam; Kral, Milan; Vacek, Ondrej; Pokryvkova, Barbora; Mistrik, Martin; Soucek, Karel; Bouchal, Jan
Skp2 and Slug Are Coexpressed in Aggressive Prostate Cancer and Inhibited by Neddylation Blockade. Journal Article
In: International journal of molecular sciences, vol. 22, no. 6, 2021, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Protein Processing, Androgen/genetics/metabolism, Antigens, Antineoplastic Agents/pharmacology, Cadherins/genetics/metabolism, CD/genetics/metabolism, Cell Line, Cell Survival/drug effects, Cyclin-Dependent Kinase Inhibitor p27/genetics/metabolism, Cyclopentanes/pharmacology, Docetaxel/pharmacology, Epithelial-Mesenchymal Transition/genetics, Gene Expression Regulation, Humans, Immunohistochemistry, Lymphatic Metastasis, Male, multiplex, NEDD8 Protein/*genetics/metabolism, neddylation, Neoplasm Grading, Neoplastic, PC-3 Cells, Post-Translational, Prostate cancer, Prostate/metabolism/pathology, Prostatic Neoplasms/*genetics/metabolism/pathology, Pyrimidines/pharmacology, Receptors, RNA, S-Phase Kinase-Associated Proteins/antagonists & inhibitors/*genetics/metabolism, Skp2 (S-phase kinase-associated protein 2), Slug, Small Interfering/genetics/metabolism, Snail Family Transcription Factors/*genetics/metabolism, Tumor
@article{mickova_skp2_2021,
title = {Skp2 and Slug Are Coexpressed in Aggressive Prostate Cancer and Inhibited by Neddylation Blockade.},
author = {Alena Mickova and Gvantsa Kharaishvili and Daniela Kurfurstova and Mariam Gachechiladze and Milan Kral and Ondrej Vacek and Barbora Pokryvkova and Martin Mistrik and Karel Soucek and Jan Bouchal},
doi = {10.3390/ijms22062844},
issn = {1422-0067},
year = {2021},
date = {2021-03-01},
journal = {International journal of molecular sciences},
volume = {22},
number = {6},
abstract = {Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men in Western countries, and there is still an urgent need for a better understanding of PCa progression to inspire new treatment strategies. Skp2 is a substrate-recruiting component of the E3 ubiquitin ligase complex, whose activity is regulated through neddylation. Slug is a transcriptional repressor involved in the epithelial-to-mesenchymal transition, which may contribute to therapy resistance. Although Skp2 has previously been associated with a mesenchymal phenotype and prostate cancer progression, the relationship with Slug deserves further elucidation. We have previously shown that a high Gleason score (≥8) is associated with higher Skp2 and lower E-cadherin expression. In this study, significantly increased expression of Skp2, AR, and Slug, along with E-cadherin downregulation, was observed in primary prostate cancer in patients who already had lymph node metastases. Skp2 was slightly correlated with Slug and AR in the whole cohort (Rs 0.32 and 0.37, respectively), which was enhanced for both proteins in patients with high Gleason scores (Rs 0.56 and 0.53, respectively) and, in the case of Slug, also in patients with metastasis to lymph nodes (Rs 0.56). Coexpression of Skp2 and Slug was confirmed in prostate cancer tissues by multiplex immunohistochemistry and confocal microscopy. The same relationship between these two proteins was observed in three sets of prostate epithelial cell lines (PC3, DU145, and E2) and their mesenchymal counterparts. Chemical inhibition of Skp2, but not RNA interference, modestly decreased Slug protein in PC3 and its docetaxel-resistant subline PC3 DR12. Importantly, chemical inhibition of Skp2 by MLN4924 upregulated p27 and decreased Slug expression in PC3, PC3 DR12, and LAPC4 cells. Novel treatment strategies targeting Skp2 and Slug by the neddylation blockade may be promising in advanced prostate cancer, as recently documented for other aggressive solid tumors.},
note = {Place: Switzerland},
keywords = {*Protein Processing, Androgen/genetics/metabolism, Antigens, Antineoplastic Agents/pharmacology, Cadherins/genetics/metabolism, CD/genetics/metabolism, Cell Line, Cell Survival/drug effects, Cyclin-Dependent Kinase Inhibitor p27/genetics/metabolism, Cyclopentanes/pharmacology, Docetaxel/pharmacology, Epithelial-Mesenchymal Transition/genetics, Gene Expression Regulation, Humans, Immunohistochemistry, Lymphatic Metastasis, Male, multiplex, NEDD8 Protein/*genetics/metabolism, neddylation, Neoplasm Grading, Neoplastic, PC-3 Cells, Post-Translational, Prostate cancer, Prostate/metabolism/pathology, Prostatic Neoplasms/*genetics/metabolism/pathology, Pyrimidines/pharmacology, Receptors, RNA, S-Phase Kinase-Associated Proteins/antagonists & inhibitors/*genetics/metabolism, Skp2 (S-phase kinase-associated protein 2), Slug, Small Interfering/genetics/metabolism, Snail Family Transcription Factors/*genetics/metabolism, Tumor},
pubstate = {published},
tppubtype = {article}
}
Hýžďalová, Martina; Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Vacek, Ondřej; Fedr, Radek; Andrysík, Zdeněk; Hrubá, Eva; Líbalová, Helena; Kléma, Jiří; Topinka, Jan; Mašek, Josef; Souček, Karel; Vondráček, Jan; Machala, Miroslav
In: Chemosphere, vol. 263, pp. 128126, 2021, ISSN: 1879-1298 0045-6535, (Place: England).
Abstract | Links | BibTeX | Tags: *Carcinoma, *Lung Neoplasms/genetics, Aryl Hydrocarbon/genetics, BaP, Benzo(a)pyrene/toxicity, Cell Proliferation, EMT, Epithelial Cells, Humans, Lung, Lung carcinoma, Phenotype, Receptors, TCDD, Tumor progression
@article{hyzdalova_prolonged_2021,
title = {A prolonged exposure of human lung carcinoma epithelial cells to benzo[a]pyrene induces p21-dependent epithelial-to-mesenchymal transition (EMT)-like phenotype.},
author = {Martina Hýžďalová and Jiřina Procházková and Simona Strapáčová and Lucie Svržková and Ondřej Vacek and Radek Fedr and Zdeněk Andrysík and Eva Hrubá and Helena Líbalová and Jiří Kléma and Jan Topinka and Josef Mašek and Karel Souček and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.chemosphere.2020.128126},
issn = {1879-1298 0045-6535},
year = {2021},
date = {2021-01-01},
journal = {Chemosphere},
volume = {263},
pages = {128126},
abstract = {Deciphering the role of the aryl hydrocarbon receptor (AhR) in lung cancer cells may help us to better understand the role of toxic AhR ligands in lung carcinogenesis, including cancer progression. We employed human lung carcinoma A549 cells to investigate their fate after continuous two-week exposure to model AhR agonists, genotoxic benzo[a]pyrene (BaP; 1 μM) and non-genotoxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 nM). While TCDD increased proliferative rate of A549 cells, exposure to BaP decreased cell proliferation and induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which was associated with enhanced cell migration, invasion, and altered cell morphology. Although TCDD also suppressed expression of E-cadherin and activated some genes linked to EMT, it did not induce the EMT-like phenotype. The results of transcriptomic analysis, and the opposite effects of BaP and TCDD on cell proliferation, indicated that a delay in cell cycle progression, together with a slight increase of senescence (when coupled with AhR activation), favors the induction of EMT-like phenotype. The shift towards EMT-like phenotype observed after simultaneous treatment with TCDD and mitomycin C (an inhibitor of cell proliferation) confirmed the hypothesis. Since BaP decreased cell proliferative rate via induction of p21 expression, we generated the A549 cell model with reduced p21 expression and exposed it to BaP for two weeks. The p21 knockdown suppressed the BaP-mediated EMT-like phenotype in A549 cells, thus confirming that a delayed cell cycle progression, together with p21-dependent induction of senescence-related chemokine CCL2, may contribute to induction of EMT-like cell phenotype in lung cells exposed to genotoxic AhR ligands.},
note = {Place: England},
keywords = {*Carcinoma, *Lung Neoplasms/genetics, Aryl Hydrocarbon/genetics, BaP, Benzo(a)pyrene/toxicity, Cell Proliferation, EMT, Epithelial Cells, Humans, Lung, Lung carcinoma, Phenotype, Receptors, TCDD, Tumor progression},
pubstate = {published},
tppubtype = {article}
}
2020
Nekvindova, Jana; Mrkvicova, Alena; Zubanova, Veronika; Vaculova, Alena Hyrslova; Anzenbacher, Pavel; Soucek, Pavel; Radova, Lenka; Slaby, Ondrej; Kiss, Igor; Vondracek, Jan; Spicakova, Alena; Bohovicova, Lucia; Fabian, Pavel; Kala, Zdenek; Palicka, Vladimir
Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450. Journal Article
In: Biochemical pharmacology, vol. 177, pp. 113912, 2020, ISSN: 1873-2968 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: *Gene Expression Regulation, *Transcriptome, Adult, Aged, Carcinoma, Cohort Studies, CYP, Cytochrome P-450 Enzyme System/*genetics, Cytochrome P450, Cytoplasmic and Nuclear/genetics/metabolism, Drug metabolism, Enzymologic, Female, Gene Expression, Gene Expression Profiling, Hepatocellular carcinoma, Hepatocellular/*enzymology/pathology, Hepatocytes/metabolism, Humans, Inactivation, Liver Neoplasms/*enzymology/pathology, Liver/metabolism, Male, Metabolic/genetics, Middle Aged, Neoplasm Grading, Non-coding RNA, Receptors
@article{nekvindova_hepatocellular_2020,
title = {Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450.},
author = {Jana Nekvindova and Alena Mrkvicova and Veronika Zubanova and Alena Hyrslova Vaculova and Pavel Anzenbacher and Pavel Soucek and Lenka Radova and Ondrej Slaby and Igor Kiss and Jan Vondracek and Alena Spicakova and Lucia Bohovicova and Pavel Fabian and Zdenek Kala and Vladimir Palicka},
doi = {10.1016/j.bcp.2020.113912},
issn = {1873-2968 0006-2952},
year = {2020},
date = {2020-07-01},
journal = {Biochemical pharmacology},
volume = {177},
pages = {113912},
abstract = {Hepatocellular carcinoma (HCC) remains a highly prevalent and deadly disease, being among the top causes of cancer-related deaths worldwide. Despite the fact that the liver is the major site of biotransformation, studies on drug metabolizing enzymes in HCC are scarce. It is known that malignant transformation of hepatocytes leads to a significant alteration of their metabolic functions and overall deregulation of gene expression. Advanced stages of the disease are thus frequently associated with liver failure, and severe alteration of drug metabolism. However, the impact of dysregulation of metabolic enzymes on therapeutic efficacy and toxicity in HCC patients is largely unknown. Here we demonstrate a significant down-regulation in European Caucasian patients of cytochromes P450 (CYPs), the major xenobiotic-metabolizing enzymes, in HCC tumour samples as compared to their surrounding non-cancerous (reference) tissue. Moreover, we report for the first time the association of the unique CYP profiles with specific transcriptome changes, and interesting correlations with expression levels of nuclear receptors and with the histological grade of the tumours. Integrated analysis has suggested certain co-expression profiles of CYPs with lncRNAs that need to be further characterized. Patients with large tumours with down-regulated CYPs could be more vulnerable to drug toxicity; on the other hand, such tumours would eliminate drugs more slowly and should be more sensitive to pharmacotherapy (except in the case of pro-drugs where activation is necessary).},
note = {Place: England},
keywords = {*Gene Expression Regulation, *Transcriptome, Adult, Aged, Carcinoma, Cohort Studies, CYP, Cytochrome P-450 Enzyme System/*genetics, Cytochrome P450, Cytoplasmic and Nuclear/genetics/metabolism, Drug metabolism, Enzymologic, Female, Gene Expression, Gene Expression Profiling, Hepatocellular carcinoma, Hepatocellular/*enzymology/pathology, Hepatocytes/metabolism, Humans, Inactivation, Liver Neoplasms/*enzymology/pathology, Liver/metabolism, Male, Metabolic/genetics, Middle Aged, Neoplasm Grading, Non-coding RNA, Receptors},
pubstate = {published},
tppubtype = {article}
}
Vyhlídalová, Barbora; Krasulová, Kristýna; Pečinková, Petra; Marcalíková, Adéla; Vrzal, Radim; Zemánková, Lenka; Vančo, Jan; Trávníček, Zdeněk; Vondráček, Jan; Karasová, Martina; Mani, Sridhar; Dvořák, Zdeněk
Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization. Journal Article
In: International journal of molecular sciences, vol. 21, no. 7, 2020, ISSN: 1422-0067, (Place: Switzerland).
Abstract | Links | BibTeX | Tags: *Gastrointestinal Microbiome/drug effects, Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/*metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/*metabolism, Cell Line, Cytochrome P-450 CYP1A1/genetics, Gene Expression, Genes, Genetic, Humans, Indoles, Ligands, Metabolic Networks and Pathways, Mice, Microbiome, Promoter Regions, Protein Binding, Protein Multimerization, Receptors, Reporter, tryptophan, Tryptophan/*metabolism, Tumor
@article{vyhlidalova_gut_2020,
title = {Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization.},
author = {Barbora Vyhlídalová and Kristýna Krasulová and Petra Pečinková and Adéla Marcalíková and Radim Vrzal and Lenka Zemánková and Jan Vančo and Zdeněk Trávníček and Jan Vondráček and Martina Karasová and Sridhar Mani and Zdeněk Dvořák},
doi = {10.3390/ijms21072614},
issn = {1422-0067},
year = {2020},
date = {2020-04-01},
journal = {International journal of molecular sciences},
volume = {21},
number = {7},
abstract = {We examined the effects of gut microbial catabolites of tryptophan on the aryl hydrocarbon receptor (AhR). Using a reporter gene assay, we show that all studied catabolites are low-potency agonists of human AhR. The efficacy of catabolites differed substantially, comprising agonists with no or low (i3-propionate, i3-acetate, i3-lactate, i3-aldehyde), medium (i3-ethanol, i3-acrylate, skatole, tryptamine), and high (indole, i3-acetamide, i3-pyruvate) efficacies. We displayed ligand-selective antagonist activities by i3-pyruvate, i3-aldehyde, indole, skatole, and tryptamine. Ligand binding assay identified low affinity (skatole, i3-pyruvate, and i3-acetamide) and very low affinity (i3-acrylate, i3-ethanol, indole) ligands of the murine AhR. Indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, and i3-acetamide induced CYP1A1 mRNA in intestinal LS180 and HT-29 cells, but not in the AhR-knockout HT-29 variant. We observed a similar CYP1A1 induction pattern in primary human hepatocytes. The most AhR-active catabolites (indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, i3-acetamide) elicited nuclear translocation of the AhR, followed by a formation of AhR-ARNT heterodimer and enhanced binding of the AhR to the CYP1A1 gene promoter. Collectively, we comprehensively characterized the interactions of gut microbial tryptophan catabolites with the AhR, which may expand the current understanding of their potential roles in intestinal health and disease.},
note = {Place: Switzerland},
keywords = {*Gastrointestinal Microbiome/drug effects, Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/*metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/*metabolism, Cell Line, Cytochrome P-450 CYP1A1/genetics, Gene Expression, Genes, Genetic, Humans, Indoles, Ligands, Metabolic Networks and Pathways, Mice, Microbiome, Promoter Regions, Protein Binding, Protein Multimerization, Receptors, Reporter, tryptophan, Tryptophan/*metabolism, Tumor},
pubstate = {published},
tppubtype = {article}
}
2019
Svobodová, Jana; Procházková, Jiřina; Kabátková, Markéta; Krkoška, Martin; Šmerdová, Lenka; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors. Journal Article
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 172, no. 2, pp. 368–384, 2019, ISSN: 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: *Models, Adaptor Proteins, Apoptosis, Apoptosis/*drug effects/genetics, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Biological, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects/genetics, Gene Expression/drug effects, HepaRG cells, Hippo signaling, Humans, Liver/*drug effects/pathology, Polychlorinated Dibenzodioxins/*toxicity, Receptors, RNA, Signal Transducing/genetics, Signal Transduction, Small Interfering/genetics, Stem Cells/*drug effects/pathology, Trans-Activators/genetics, Transcription Factors/genetics, Transcriptional Coactivator with PDZ-Binding Motif Proteins, Transfection, YAP-Signaling Proteins
@article{svobodova_2378-tetrachlorodibenzo-p-dioxin_2019,
title = {2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors.},
author = {Jana Svobodová and Jiřina Procházková and Markéta Kabátková and Martin Krkoška and Lenka Šmerdová and Helena Líbalová and Jan Topinka and Jiří Kléma and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1093/toxsci/kfz202},
issn = {1096-0929},
year = {2019},
date = {2019-12-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {172},
number = {2},
pages = {368–384},
abstract = {The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.},
note = {Place: United States},
keywords = {*Models, Adaptor Proteins, Apoptosis, Apoptosis/*drug effects/genetics, Aryl hydrocarbon receptor, Aryl Hydrocarbon/metabolism, Biological, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects/genetics, Gene Expression/drug effects, HepaRG cells, Hippo signaling, Humans, Liver/*drug effects/pathology, Polychlorinated Dibenzodioxins/*toxicity, Receptors, RNA, Signal Transducing/genetics, Signal Transduction, Small Interfering/genetics, Stem Cells/*drug effects/pathology, Trans-Activators/genetics, Transcription Factors/genetics, Transcriptional Coactivator with PDZ-Binding Motif Proteins, Transfection, YAP-Signaling Proteins},
pubstate = {published},
tppubtype = {article}
}
Pěnčíková, Kateřina; Ciganek, Miroslav; Neča, Jiří; Illés, Peter; Dvořák, Zdeněk; Vondráček, Jan; Machala, Miroslav
Modulation of endocrine nuclear receptor activities by polyaromatic compounds present in fractionated extracts of diesel exhaust particles. Journal Article
In: The Science of the total environment, vol. 677, pp. 626–636, 2019, ISSN: 1879-1026 0048-9697, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: *Vehicle Emissions, Air Pollutants/*adverse effects, Androgen receptor, Cell Line, Cytoplasmic and Nuclear/*genetics/metabolism, Diesel exhaust particles, Estrogen receptor α, Glucocorticoid receptor, Humans, Particulate Matter/*adverse effects, Peroxisome proliferator-activated receptor γ, Polycyclic Aromatic Hydrocarbons/*adverse effects, Receptors, Thyroid receptor α
@article{pencikova_modulation_2019,
title = {Modulation of endocrine nuclear receptor activities by polyaromatic compounds present in fractionated extracts of diesel exhaust particles.},
author = {Kateřina Pěnčíková and Miroslav Ciganek and Jiří Neča and Peter Illés and Zdeněk Dvořák and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.scitotenv.2019.04.390},
issn = {1879-1026 0048-9697},
year = {2019},
date = {2019-08-01},
journal = {The Science of the total environment},
volume = {677},
pages = {626–636},
abstract = {Organic pollutants associated with diesel exhaust particles (DEP), such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives, may negatively impact human health. However, a comprehensive overview of their effects on endocrine nuclear receptor activities is still missing. Here, we evaluated the effects of extracts and chromatographic fractions (fractionated according to increasing polarity) of two standard reference materials derived from distinct types of diesel engines (SRM 2975, SRM 1650b), on activation of androgen receptor (AR), estrogen receptor alpha (ERα), peroxisome proliferator-activated receptor γ (PPARγ), glucocorticoid receptor (GR) and thyroid receptor α (TRα), using human cell-based reporter gene assays. Neither DEP standard modulated AR or GR activities. Crude extracts and fractions of SRM 1650b and SRM 2975 suppressed ERα-mediated activity in the ER-CALUX™ assay; however, this effect could be partly linked to their cytotoxicity in this cell line. We observed that only SRM 2975 extract and its fractions were partial PPARγ inducers, while SRM 1650b extract was not active towards this receptor. Importantly, we found that both extracts and polar fractions of SRM activated TRα and significantly potentiated the activity of endogenous TRα ligand, triiodothyronine. Based on a detailed chemical analysis of both extracts and their polar fractions, we identified several oxygenated PAH derivatives, that were present at relatively high levels in the analyzed DEP standards, including 3-nitrobenzanthrone (3-NBA), anthracene-9,10-dione, phenanthrene-9,10-dione, 9H-fluoren-9-one or benzo[a]anthracene-7,12-dione, to activate TRα activity. Nevertheless, these compounds provided only a minor contribution to the overall TRα activity identified in polar fractions. This suggests that yet unidentified polar polyaromatic compounds associated with DEP may, apart from their known impact on the aryl hydrocarbon receptor or steroid signaling, deregulate activities of additional nuclear receptors, in particular of TRα. This illustrates the need to better characterize endocrine disrupting activities of DEP.},
note = {Place: Netherlands},
keywords = {*Vehicle Emissions, Air Pollutants/*adverse effects, Androgen receptor, Cell Line, Cytoplasmic and Nuclear/*genetics/metabolism, Diesel exhaust particles, Estrogen receptor α, Glucocorticoid receptor, Humans, Particulate Matter/*adverse effects, Peroxisome proliferator-activated receptor γ, Polycyclic Aromatic Hydrocarbons/*adverse effects, Receptors, Thyroid receptor α},
pubstate = {published},
tppubtype = {article}
}
2018
Hýžd'alová, Martina; Pivnicka, Jakub; Zapletal, Ondrej; Vázquez-Gómez, Gerardo; Matthews, Jason; Neca, Jirí; Pencíková, Katerina; Machala, Miroslav; Vondrácek, Jan
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 165, no. 2, pp. 447–461, 2018, ISSN: 1096-0929 1096-6080, (Place: United States).
Abstract | Links | BibTeX | Tags: Aryl Hydrocarbon/genetics/*metabolism, Cell Culture Techniques, Cell Cycle/drug effects/genetics, Cell Proliferation/*drug effects/genetics, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1/genetics/metabolism, Endocrine Disruptors/metabolism/*toxicity, Estrogen/genetics/metabolism, Gene Expression/drug effects, Gene Knockdown Techniques, Genes, Genetic Vectors, Humans, MCF-7 Cells, Plasmids, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter, Transfection
@article{hyzdalova_aryl_2018,
title = {Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation.},
author = {Martina Hýžd'alová and Jakub Pivnicka and Ondrej Zapletal and Gerardo Vázquez-Gómez and Jason Matthews and Jirí Neca and Katerina Pencíková and Miroslav Machala and Jan Vondrácek},
doi = {10.1093/toxsci/kfy153},
issn = {1096-0929 1096-6080},
year = {2018},
date = {2018-10-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {165},
number = {2},
pages = {447–461},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that interact in a complex manner with both the aryl hydrocarbon receptor (AhR) and estrogen receptors (ER). Their potential endocrine-disrupting activities may depend on both inhibitory AhR-ER cross-talk and on AhR-dependent metabolic production of estrogenic PAH metabolites. Here, we analyzed the impact of AhR on estrogen-like effects of PAHs, such as benzo[a]pyrene (BaP), in particular, on control of cell cycle progression/cell proliferation. Using AhR knockout variant of estrogen-sensitive human breast cancer MCF-7 cells (MCF-7 AhRKO cells), we observed that the AhR-dependent control of cytochrome P450 family 1 (CYP1) expression played a major role in formation of estrogenic BaP metabolites, most notably 3-OH-BaP, which contributed to the ER-dependent induction of cell cycle progression/cell proliferation. Both BaP metabolism and the BaP-induced S-phase transition/cell proliferation were inhibited in MCF-7 AhRKO cells, whereas these cells remained sensitive towards both endogenous estrogen 17β-estradiol or hydroxylated BaP metabolites. BaP was found to increase the activity of ER-dependent luciferase reporter gene in wild-type MCF-7 cells; however, unlike its hydroxylated metabolite, BaP failed to stimulate luciferase activity in MCF-7 AhRKO cells. Similarly, estrogen-like effects of other known estrogenic PAHs, such as benz[a]anthracene or 3-methylcholanthrene, were diminished in MCF-7 AhRKO cells. Ectopic expression of human CYP1A1 and CYP1B1 enzymes partly restored both BaP metabolism and its effects on cell proliferation. Taken together, our data suggest that the AhR-dependent metabolism of PAHs contributes significantly to the impact of PAHs on cell proliferation in estrogen-sensitive cells.},
note = {Place: United States},
keywords = {Aryl Hydrocarbon/genetics/*metabolism, Cell Culture Techniques, Cell Cycle/drug effects/genetics, Cell Proliferation/*drug effects/genetics, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1/genetics/metabolism, Endocrine Disruptors/metabolism/*toxicity, Estrogen/genetics/metabolism, Gene Expression/drug effects, Gene Knockdown Techniques, Genes, Genetic Vectors, Humans, MCF-7 Cells, Plasmids, Polycyclic Aromatic Hydrocarbons/metabolism/*toxicity, Receptors, Reporter, Transfection},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Andrysík, Zdeněk; Hýžďalová, Martina; Hrubá, Eva; Pěnčíková, Kateřina; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Espinosa, Joaquín M.; Vondráček, Jan; Machala, Miroslav
Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Journal Article
In: Toxicology letters, vol. 292, pp. 162–174, 2018, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: A549 Cells, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/metabolism, Azo Compounds/toxicity, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, Benzo(a)pyrene/toxicity, Carbazoles/toxicity, Dioxins, Environmental Pollutants/*toxicity, Fluorenes/toxicity, Gene Expression Profiling/methods, Gene Expression Regulation, Gene Regulatory Networks/drug effects, Genetic/drug effects, Global gene expression profiling, Humans, Indoles/toxicity, Ligands, Lung cancer, Lung Neoplasms/*genetics/metabolism, Neoplastic/*drug effects, Oligonucleotide Array Sequence Analysis, Polychlorinated Dibenzodioxins/toxicity, Pyrazoles/toxicity, Receptors, Signal Transduction/drug effects, Thiazoles/toxicity, Time Factors, Transcription, Transcriptional Activation/drug effects, Transcriptome/*drug effects
@article{prochazkova_adaptive_2018,
title = {Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands.},
author = {Jiřina Procházková and Simona Strapáčová and Lucie Svržková and Zdeněk Andrysík and Martina Hýžďalová and Eva Hrubá and Kateřina Pěnčíková and Helena Líbalová and Jan Topinka and Jiří Kléma and Joaquín M. Espinosa and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.toxlet.2018.04.024},
issn = {1879-3169 0378-4274},
year = {2018},
date = {2018-08-01},
journal = {Toxicology letters},
volume = {292},
pages = {162–174},
abstract = {Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants.},
note = {Place: Netherlands},
keywords = {A549 Cells, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/metabolism, Azo Compounds/toxicity, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, Benzo(a)pyrene/toxicity, Carbazoles/toxicity, Dioxins, Environmental Pollutants/*toxicity, Fluorenes/toxicity, Gene Expression Profiling/methods, Gene Expression Regulation, Gene Regulatory Networks/drug effects, Genetic/drug effects, Global gene expression profiling, Humans, Indoles/toxicity, Ligands, Lung cancer, Lung Neoplasms/*genetics/metabolism, Neoplastic/*drug effects, Oligonucleotide Array Sequence Analysis, Polychlorinated Dibenzodioxins/toxicity, Pyrazoles/toxicity, Receptors, Signal Transduction/drug effects, Thiazoles/toxicity, Time Factors, Transcription, Transcriptional Activation/drug effects, Transcriptome/*drug effects},
pubstate = {published},
tppubtype = {article}
}
Pěnčíková, Kateřina; Svržková, Lucie; Strapáčová, Simona; Neča, Jiří; Bartoňková, Iveta; Dvořák, Zdeněk; Hýžďalová, Martina; Pivnička, Jakub; Pálková, Lenka; Lehmler, Hans-Joachim; Li, Xueshu; Vondráček, Jan; Machala, Miroslav
In: Environmental pollution (Barking, Essex : 1987), vol. 237, pp. 473–486, 2018, ISSN: 1873-6424 0269-7491, (Place: England).
Abstract | Links | BibTeX | Tags: Air Pollutants/*toxicity, Airborne polychlorinated biphenyls, Cell Line, Constitutive Androstane Receptor, Cytoplasmic and Nuclear/metabolism, Endocrine disruption, Endocrine Disruptors/metabolism/*toxicity, Epithelial Cells/drug effects, Humans, HydroxyLated PCBs, Hydroxylation, Metabolism of xenobiotics, Neoplasms/metabolism, Polychlorinated Biphenyls/metabolism/*toxicity, Pregnane X receptor, Receptors, Signal Transduction/drug effects, Steroid/metabolism, Tumor promotion
@article{pencikova_vitro_2018,
title = {In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion.},
author = {Kateřina Pěnčíková and Lucie Svržková and Simona Strapáčová and Jiří Neča and Iveta Bartoňková and Zdeněk Dvořák and Martina Hýžďalová and Jakub Pivnička and Lenka Pálková and Hans-Joachim Lehmler and Xueshu Li and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.envpol.2018.02.067},
issn = {1873-6424 0269-7491},
year = {2018},
date = {2018-06-01},
journal = {Environmental pollution (Barking, Essex : 1987)},
volume = {237},
pages = {473–486},
abstract = {The mechanisms contributing to toxic effects of airborne lower-chlorinated PCB congeners (LC-PCBs) remain poorly characterized. We evaluated in vitro toxicities of environmental LC-PCBs found in both indoor and outdoor air (PCB 4, 8, 11, 18, 28 and 31), and selected hydroxylated metabolites of PCB 8, 11 and 18, using reporter gene assays, as well as other functional cellular bioassays. We focused on processes linked with endocrine disruption, tumor promotion and/or regulation of transcription factors controlling metabolism of both endogenous compounds and xenobiotics. The tested LC-PCBs were found to be mostly efficient anti-androgenic (within nanomolar - micromolar range) and estrogenic (at micromolar concentrations) compounds, as well as inhibitors of gap junctional intercellular communication (GJIC) at micromolar concentrations. PCB 8, 28 and 31 were found to partially inhibit the aryl hydrocarbon receptor (AhR)-mediated activity. The tested LC-PCBs were also partial constitutive androstane receptor (CAR) and pregnane X receptor (PXR) agonists, with PCB 4, 8 and 18 being the most active compounds. They were inactive towards other nuclear receptors, such as vitamin D receptor, thyroid receptor α, glucocorticoid receptor or peroxisome proliferator-activated receptor γ. We found that only PCB 8 contributed to generation of oxidative stress, while all tested LC-PCBs induced arachidonic acid release (albeit without further modulations of arachidonic acid metabolism) in human lung epithelial cells. Importantly, estrogenic effects of hydroxylated (OH-PCB) metabolites of LC-PCBs (4-OH-PCB 8, 4-OH-PCB 11 and 4'-OH-PCB 18) were higher than those of the parent PCBs, while their other toxic effects were only slightly altered or suppressed. This suggested that metabolism may alter toxicity profiles of LC-PCBs in a receptor-specific manner. In summary, anti-androgenic and estrogenic activities, acute inhibition of GJIC and suppression of the AhR-mediated activity were found to be the most relevant modes of action of airborne LC-PCBs, although they partially affected also additional cellular targets.},
note = {Place: England},
keywords = {Air Pollutants/*toxicity, Airborne polychlorinated biphenyls, Cell Line, Constitutive Androstane Receptor, Cytoplasmic and Nuclear/metabolism, Endocrine disruption, Endocrine Disruptors/metabolism/*toxicity, Epithelial Cells/drug effects, Humans, HydroxyLated PCBs, Hydroxylation, Metabolism of xenobiotics, Neoplasms/metabolism, Polychlorinated Biphenyls/metabolism/*toxicity, Pregnane X receptor, Receptors, Signal Transduction/drug effects, Steroid/metabolism, Tumor promotion},
pubstate = {published},
tppubtype = {article}
}
Pěnčíková, Kateřina; Brenerová, Petra; Svržková, Lucie; Hrubá, Eva; Pálková, Lenka; Vondráček, Jan; Lehmler, Hans-Joachim; Machala, Miroslav
Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro. Journal Article
In: Environmental science and pollution research international, vol. 25, no. 17, pp. 16411–16419, 2018, ISSN: 1614-7499 0944-1344, (Place: Germany).
Abstract | Links | BibTeX | Tags: Androgen receptor, Animals, Atropisomer, Biotransformation, Chiral, Constitutive Androstane Receptor, Cytoplasmic and Nuclear/*chemistry/metabolism, Estrogen receptors, Humans, Polychlorinated biphenyl, Polychlorinated Biphenyls/*chemistry, Pregnane X receptor, Receptors, Stereoisomerism, Steroid/chemistry/metabolism
@article{pencikova_atropisomers_2018,
title = {Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro.},
author = {Kateřina Pěnčíková and Petra Brenerová and Lucie Svržková and Eva Hrubá and Lenka Pálková and Jan Vondráček and Hans-Joachim Lehmler and Miroslav Machala},
doi = {10.1007/s11356-017-0683-x},
issn = {1614-7499 0944-1344},
year = {2018},
date = {2018-06-01},
journal = {Environmental science and pollution research international},
volume = {25},
number = {17},
pages = {16411–16419},
abstract = {PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.},
note = {Place: Germany},
keywords = {Androgen receptor, Animals, Atropisomer, Biotransformation, Chiral, Constitutive Androstane Receptor, Cytoplasmic and Nuclear/*chemistry/metabolism, Estrogen receptors, Humans, Polychlorinated biphenyl, Polychlorinated Biphenyls/*chemistry, Pregnane X receptor, Receptors, Stereoisomerism, Steroid/chemistry/metabolism},
pubstate = {published},
tppubtype = {article}
}
2017
Vondráček, Jan; Pěnčíková, Kateřina; Neča, Jiří; Ciganek, Miroslav; Grycová, Aneta; Dvořák, Zdeněk; Machala, Miroslav
Assessment of the aryl hydrocarbon receptor-mediated activities of polycyclic aromatic hydrocarbons in a human cell-based reporter gene assay. Journal Article
In: Environmental pollution (Barking, Essex : 1987), vol. 220, no. Pt A, pp. 307–316, 2017, ISSN: 1873-6424 0269-7491, (Place: England).
Abstract | Links | BibTeX | Tags: AhR, AhR-mediated activity, Aryl Hydrocarbon/metabolism/*physiology, Basic Helix-Loop-Helix Transcription Factors/metabolism/*physiology, Biological Assay/methods, Carcinogens/toxicity, Cell Line, Environmental Pollutants/*toxicity, Genes, Humans, PAH mixtures, PAHs, Polycyclic Aromatic Hydrocarbons/*toxicity, Receptors, Relative effective potency, Reporter, Vehicle Emissions/toxicity
@article{vondracek_assessment_2017,
title = {Assessment of the aryl hydrocarbon receptor-mediated activities of polycyclic aromatic hydrocarbons in a human cell-based reporter gene assay.},
author = {Jan Vondráček and Kateřina Pěnčíková and Jiří Neča and Miroslav Ciganek and Aneta Grycová and Zdeněk Dvořák and Miroslav Machala},
doi = {10.1016/j.envpol.2016.09.064},
issn = {1873-6424 0269-7491},
year = {2017},
date = {2017-01-01},
journal = {Environmental pollution (Barking, Essex : 1987)},
volume = {220},
number = {Pt A},
pages = {307–316},
abstract = {Activation of the aryl hydrocarbon receptor (AhR)-mediated activity is one of key events in toxicity of polycyclic aromatic hydrocarbons (PAHs). Although various classes of AhR ligands may differentially activate human and rodent AhR, there is presently a lack of data on the human AhR-inducing relative potencies (REPs) of PAHs. Here, we focused on estimation of the AhR-mediated activities of a large set of environmental PAHs in human gene reporter AZ-AhR cell line, with an aim to develop the human AhR-based REP values with potential implications for risk assessment of PAHs. The previously identified weakly active PAHs mostly failed to activate the AhR in human cells. The order for REPs of individual PAHs in human cells largely corresponded with the available data from rodent-based experimental systems; nevertheless, we identified differences up to one order of magnitude in REP values of PAHs between human and rodent cells. Higher REP values were found in human cells for some important environmental contaminants or suspected carcinogens, such as indeno[1,2,3-cd]pyrene, benz[a]anthracene or benzo[b]fluoranthene, while lower REP values were determined for methyl-substituted PAHs. Our results also indicate that a different rate of metabolism for individual PAHs in human vs. rodent cells may affect estimation of REP values in human cell-based assay, and potentially alter toxicity of some compounds, such as benzofluoranthenes, in humans. We applied the AZ-AhR assay to evaluation of the AhR-mediated activity of complex mixtures of organic compounds associated with diesel exhaust particles, and we identified the polar compounds present in these mixtures as being particularly highly active in human cells, as compared with rodent cells. The present data suggest that differences may exist between the AhR-mediated potencies of PAHs in human and rodent cells, and that the AhR-mediated effects of polar PAH derivatives and metabolites in human cell models deserve further attention.},
note = {Place: England},
keywords = {AhR, AhR-mediated activity, Aryl Hydrocarbon/metabolism/*physiology, Basic Helix-Loop-Helix Transcription Factors/metabolism/*physiology, Biological Assay/methods, Carcinogens/toxicity, Cell Line, Environmental Pollutants/*toxicity, Genes, Humans, PAH mixtures, PAHs, Polycyclic Aromatic Hydrocarbons/*toxicity, Receptors, Relative effective potency, Reporter, Vehicle Emissions/toxicity},
pubstate = {published},
tppubtype = {article}
}
2016
Brenerová, Petra; Hamers, Timo; Kamstra, Jorke H.; Vondráček, Jan; Strapáčová, Simona; Andersson, Patrik L.; Machala, Miroslav
Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells. Journal Article
In: Environmental science and pollution research international, vol. 23, no. 3, pp. 2099–2107, 2016, ISSN: 1614-7499 0944-1344, (Place: Germany).
Abstract | Links | BibTeX | Tags: Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P450, Disruption of contact inhibition, DR-CALUX® assay, Epithelial Cells/cytology/drug effects/metabolism, Gene Expression/drug effects, Hepatocytes/cytology/drug effects/metabolism, Liver/*drug effects/metabolism, NDL-PCBs, Polychlorinated Biphenyls/*chemistry/*toxicity, Rats, Receptors, Relative effect potency, Signal Transduction/drug effects
@article{brenerova_pure_2016,
title = {Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells.},
author = {Petra Brenerová and Timo Hamers and Jorke H. Kamstra and Jan Vondráček and Simona Strapáčová and Patrik L. Andersson and Miroslav Machala},
doi = {10.1007/s11356-015-4819-6},
issn = {1614-7499 0944-1344},
year = {2016},
date = {2016-02-01},
journal = {Environmental science and pollution research international},
volume = {23},
number = {3},
pages = {2099–2107},
abstract = {The relative potencies of non-ortho-substituted coplanar polychlorinated biphenyl (PCB) congeners to activate the aryl hydrocarbon receptor (AhR) and to cause the AhR-dependent toxic events are essential for their risk assessment. Since some studies suggested that abundant non-dioxin-like PCB congeners (NDL-PCBs) may alter the AhR activation by PCB mixtures and possibly cause non-additive effects, we evaluated potential suppressive effects of NDL-PCBs on AhR activation, using a series of 24 highly purified NDL-PCBs. We investigated their impact on the model AhR agonist-induced luciferase reporter gene expression in rat hepatoma cells and on induction of CYP1A1/1B1 mRNAs and deregulation of AhR-dependent cell proliferation in rat liver epithelial cells. PCBs 128, 138, and 170 significantly suppressed AhR activation (with IC50 values from 1.4 to 5.6 μM), followed by PCBs 28, 47, 52, and 180; additionally, PCBs 122, 153, and 168 showed low but still significant potency to reduce luciferase activity. Detection of CYP1A1 mRNA levels in liver epithelial cells largely confirmed these results for the most abundant NDL-PCBs, whereas the other AhR-dependent events (CYP1B1 mRNA expression, induction of cell proliferation in confluent cells) were less sensitive to NDL-PCBs, thus indicating a more complex regulation of these endpoints. The present data suggest that some NDL-PCBs could modulate overall dioxin-like effects in complex mixtures.},
note = {Place: Germany},
keywords = {Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/genetics/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P450, Disruption of contact inhibition, DR-CALUX® assay, Epithelial Cells/cytology/drug effects/metabolism, Gene Expression/drug effects, Hepatocytes/cytology/drug effects/metabolism, Liver/*drug effects/metabolism, NDL-PCBs, Polychlorinated Biphenyls/*chemistry/*toxicity, Rats, Receptors, Relative effect potency, Signal Transduction/drug effects},
pubstate = {published},
tppubtype = {article}
}
2015
Svobodová, Jana; Kabátková, Markéta; Šmerdová, Lenka; Brenerová, Petra; Dvořák, Zdeněk; Machala, Miroslav; Vondráček, Jan
In: Toxicology, vol. 333, pp. 37–44, 2015, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: AhR, Animals, Apoptosis, Apoptosis/*drug effects, Aryl Hydrocarbon/*agonists/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, BIRC5/survivin, Camptothecin/*toxicity, Caspase 3/metabolism, Cell Line, Contact inhibition, Contact Inhibition/*drug effects, Epithelial Cells/*drug effects/metabolism/pathology, Genetic/drug effects, Hippo signaling, Humans, Inbred F344, Inhibitor of Apoptosis Proteins/genetics/metabolism, Liver/*drug effects/metabolism/pathology, Microtubule-Associated Proteins/genetics/*metabolism, Poly (ADP-Ribose) Polymerase-1, Poly(ADP-ribose) Polymerases/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Rats, Receptors, RNA Interference, Signal Transduction/drug effects, Survivin, TCDD, Time Factors, Topoisomerase I Inhibitors/*toxicity, Transcription, Transfection, Up-Regulation
@article{svobodova_aryl_2015,
title = {The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis.},
author = {Jana Svobodová and Markéta Kabátková and Lenka Šmerdová and Petra Brenerová and Zdeněk Dvořák and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.tox.2015.04.001},
issn = {1879-3185 0300-483X},
year = {2015},
date = {2015-07-01},
journal = {Toxicology},
volume = {333},
pages = {37–44},
abstract = {Inhibition of apoptosis by the ligands of the aryl hydrocarbon receptor (AhR) has been proposed to play a role in their tumor promoting effects on liver parenchymal cells. However, little is presently known about the impact of toxic AhR ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on apoptosis in other liver cell types, such as in liver epithelial/progenitor cells. In the present study, we focused on the effects of TCDD on apoptosis regulation in a model of liver progenitor cells, rat WB-F344 cell line, during the TCDD-elicited release from contact inhibition. The stimulation of cell proliferation in this cell line was associated with deregulated expression of a number of genes known to be under transcriptional control of the Hippo signaling pathway, a principal regulatory pathway involved in contact inhibition of cell proliferation. Interestingly, we found that mRNA and protein levels of survivin, a known Hippo target, which plays a role both in cell division and inhibition of apoptosis, were significantly up-regulated in rat liver epithelial cell model, as well as in undifferentiated human liver HepaRG cells. Using the short interfering RNA-mediated knockdown, we confirmed that survivin plays a central role in cell division of WB-F344 cells. When evaluating the effects of TCDD on apoptosis induction by camptothecin, a genotoxic topoisomerase I inhibitor, we observed that the pre-treatment of WB-F344 cells with TCDD increased number of cells with apoptotic nuclear morphology, and it potentiated cleavage of both caspase-3 and poly(ADP-ribose) polymerase I. This indicated that despite the observed up-regulation of survivin, apoptosis induced by the genotoxin was potentiated in the model of rat liver progenitor cells. The present results indicate that, unlike in hepatocytes, AhR agonists may not prevent induction of apoptosis elicited by DNA-damaging agents in a model of rat liver progenitor cells.},
note = {Place: Ireland},
keywords = {AhR, Animals, Apoptosis, Apoptosis/*drug effects, Aryl Hydrocarbon/*agonists/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/metabolism, BIRC5/survivin, Camptothecin/*toxicity, Caspase 3/metabolism, Cell Line, Contact inhibition, Contact Inhibition/*drug effects, Epithelial Cells/*drug effects/metabolism/pathology, Genetic/drug effects, Hippo signaling, Humans, Inbred F344, Inhibitor of Apoptosis Proteins/genetics/metabolism, Liver/*drug effects/metabolism/pathology, Microtubule-Associated Proteins/genetics/*metabolism, Poly (ADP-Ribose) Polymerase-1, Poly(ADP-ribose) Polymerases/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Rats, Receptors, RNA Interference, Signal Transduction/drug effects, Survivin, TCDD, Time Factors, Topoisomerase I Inhibitors/*toxicity, Transcription, Transfection, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
Kabátková, Markéta; Zapletal, Ondřej; Tylichová, Zuzana; Neča, Jiří; Machala, Miroslav; Milcová, Alena; Topinka, Jan; Kozubík, Alois; Vondráček, Jan
Inhibition of β-catenin signalling promotes DNA damage elicited by benzo[a]pyrene in a model of human colon cancer cells via CYP1 deregulation. Journal Article
In: Mutagenesis, vol. 30, no. 4, pp. 565–576, 2015, ISSN: 1464-3804 0267-8357, (Place: England).
Abstract | Links | BibTeX | Tags: *DNA Damage, Apoptosis, Aryl Hydrocarbon/genetics/metabolism, Benzo(a)pyrene/*adverse effects, beta Catenin/*antagonists & inhibitors/genetics/metabolism, Blotting, Carcinogens, Cell Proliferation, Colonic Neoplasms/drug therapy/*etiology/*pathology, Cultured, Cytochrome P-450 CYP1A1/antagonists & inhibitors/genetics/*metabolism, DNA Adducts/*adverse effects, Environmental/adverse effects, Enzymologic/*drug effects, Gene Expression Regulation, Humans, Immunoenzyme Techniques, Messenger/genetics, Neoplastic/*drug effects, Real-Time Polymerase Chain Reaction, Receptors, Reverse Transcriptase Polymerase Chain Reaction, RNA, Small Interfering/genetics, Tumor Cells, Western
@article{kabatkova_inhibition_2015,
title = {Inhibition of β-catenin signalling promotes DNA damage elicited by benzo[a]pyrene in a model of human colon cancer cells via CYP1 deregulation.},
author = {Markéta Kabátková and Ondřej Zapletal and Zuzana Tylichová and Jiří Neča and Miroslav Machala and Alena Milcová and Jan Topinka and Alois Kozubík and Jan Vondráček},
doi = {10.1093/mutage/gev019},
issn = {1464-3804 0267-8357},
year = {2015},
date = {2015-07-01},
journal = {Mutagenesis},
volume = {30},
number = {4},
pages = {565–576},
abstract = {Deregulation of Wnt/β-catenin signalling plays an important role in the pathogenesis of colorectal cancer. Interestingly, this pathway has been recently implicated in transcriptional control of cytochrome P450 (CYP) family 1 enzymes, which are responsible for bioactivation of a number of dietary carcinogens. In the present study, we investigated the impact of inhibition of Wnt/β-catenin pathway on metabolism and genotoxicity of benzo[a]pyrene (BaP), a highly mutagenic polycyclic aromatic hydrocarbon and an efficient ligand of the aryl hydrocarbon receptor, which is known as a primary regulator of CYP1 expression, in cellular models derived from colorectal tumours. We observed that a synthetic inhibitor of β-catenin, JW74, significantly increased formation of BaP-induced DNA adducts in both colorectal adenoma and carcinoma-derived cell lines. Using the short interfering RNA (siRNA) targeting β-catenin, we then found that β-catenin knockdown in HCT116 colon carcinoma cells significantly enhanced formation of covalent DNA adducts by BaP and histone H2AX phosphorylation, as detected by (32)P-postlabelling technique and immunocytochemistry, respectively, and it also induced expression of DNA damage response genes, such as CDKN1A or DDB2. The increased formation of DNA adducts formed by BaP upon β-catenin knockdown corresponded with enhanced production of major BaP metabolites, as well as with an increased expression/activity of CYP1 enzymes. Finally, using siRNA-mediated knockdown of CYP1A1, we confirmed that this enzyme plays a major role in formation of BaP-induced DNA adducts in HCT116 cells. Taken together, the present results indicated that the siRNA-mediated inhibition of β-catenin signalling, which is aberrantly activated in a majority of colorectal cancers, modulated genotoxicity of dietary carcinogen BaP in colon cell model in vitro, via a mechanism involving up-regulation of CYP1 expression and activity.},
note = {Place: England},
keywords = {*DNA Damage, Apoptosis, Aryl Hydrocarbon/genetics/metabolism, Benzo(a)pyrene/*adverse effects, beta Catenin/*antagonists & inhibitors/genetics/metabolism, Blotting, Carcinogens, Cell Proliferation, Colonic Neoplasms/drug therapy/*etiology/*pathology, Cultured, Cytochrome P-450 CYP1A1/antagonists & inhibitors/genetics/*metabolism, DNA Adducts/*adverse effects, Environmental/adverse effects, Enzymologic/*drug effects, Gene Expression Regulation, Humans, Immunoenzyme Techniques, Messenger/genetics, Neoplastic/*drug effects, Real-Time Polymerase Chain Reaction, Receptors, Reverse Transcriptase Polymerase Chain Reaction, RNA, Small Interfering/genetics, Tumor Cells, Western},
pubstate = {published},
tppubtype = {article}
}
Larsson, Malin; Berg, Martin; Brenerová, Petra; Duursen, Majorie B. M.; Ede, Karin I.; Lohr, Christiane; Luecke-Johansson, Sandra; Machala, Miroslav; Neser, Sylke; Pěnčíková, Kateřina; Poellinger, Lorenz; Schrenk, Dieter; Strapáčová, Simona; Vondráček, Jan; Andersson, Patrik L.
In: Chemical research in toxicology, vol. 28, no. 4, pp. 641–650, 2015, ISSN: 1520-5010 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*physiology, Benzofurans/chemistry/*toxicity, Computer Simulation, Dibenzofurans, Humans, In Vitro Techniques, Polychlorinated, Polychlorinated Biphenyls/chemistry/*toxicity, Polychlorinated Dibenzodioxins/*analogs & derivatives/chemistry/toxicity, Quantitative Structure-Activity Relationship, Rats, Receptors, Rodentia
@article{larsson_consensus_2015,
title = {Consensus toxicity factors for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls combining in silico models and extensive in vitro screening of AhR-mediated effects in human and rodent cells.},
author = {Malin Larsson and Martin Berg and Petra Brenerová and Majorie B. M. Duursen and Karin I. Ede and Christiane Lohr and Sandra Luecke-Johansson and Miroslav Machala and Sylke Neser and Kateřina Pěnčíková and Lorenz Poellinger and Dieter Schrenk and Simona Strapáčová and Jan Vondráček and Patrik L. Andersson},
doi = {10.1021/tx500434j},
issn = {1520-5010 0893-228X},
year = {2015},
date = {2015-04-01},
journal = {Chemical research in toxicology},
volume = {28},
number = {4},
pages = {641–650},
abstract = {Consensus toxicity factors (CTFs) were developed as a novel approach to establish toxicity factors for risk assessment of dioxin-like compounds (DLCs). Eighteen polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs), and biphenyls (PCBs) with assigned World Health Organization toxic equivalency factors (WHO-TEFs) and two additional PCBs were screened in 17 human and rodent bioassays to assess their induction of aryl hydrocarbon receptor-related responses. For each bioassay and compound, relative effect potency values (REPs) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin were calculated and analyzed. The responses in the human and rodent cell bioassays generally differed. Most notably, the human cell models responded only weakly to PCBs, with 3,3',4,4',5-pentachlorobiphenyl (PCB126) being the only PCB that frequently evoked sufficiently strong responses in human cells to permit us to calculate REP values. Calculated REPs for PCB126 were more than 30 times lower than the WHO-TEF value for PCB126. CTFs were calculated using score and loading vectors from a principal component analysis to establish the ranking of the compounds and, by rescaling, also to provide numerical differences between the different congeners corresponding to the TEF scheme. The CTFs were based on rat and human bioassay data and indicated a significant deviation for PCBs but also for certain PCDD/Fs from the WHO-TEF values. The human CTFs for 2,3,4,7,8-pentachlorodibenzofuran, 1,2,3,4,7,8-hexachlorodibenzofuran, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, and 1,2,3,4,7,8,9-heptachlorodibenzofuran were up to 10 times greater than their WHO-TEF values. Quantitative structure-activity relationship models were used to predict CTFs for untested WHO-TEF compounds, suggesting that the WHO-TEF value for 1,2,3,7,8-pentachlorodibenzofuran could be underestimated by an order of magnitude for both human and rodent models. Our results indicate that the CTF approach provides a powerful tool for condensing data from batteries of screening tests using compounds with similar mechanisms of action, which can be used to improve risk assessment of DLCs.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon/*physiology, Benzofurans/chemistry/*toxicity, Computer Simulation, Dibenzofurans, Humans, In Vitro Techniques, Polychlorinated, Polychlorinated Biphenyls/chemistry/*toxicity, Polychlorinated Dibenzodioxins/*analogs & derivatives/chemistry/toxicity, Quantitative Structure-Activity Relationship, Rats, Receptors, Rodentia},
pubstate = {published},
tppubtype = {article}
}
Pálková, Lenka; Vondráček, Jan; Trilecová, Lenka; Ciganek, Miroslav; Pěnčíková, Kateřina; Neča, Jiří; Milcová, Alena; Topinka, Jan; Machala, Miroslav
In: Toxicology in vitro : an international journal published in association with BIBRA, vol. 29, no. 3, pp. 438–448, 2015, ISSN: 1879-3177 0887-2333, (Place: England).
Abstract | Links | BibTeX | Tags: Air Pollutants/*toxicity, Air pollution, Animals, Apoptosis, Apoptosis/drug effects, Aryl Hydrocarbon/*drug effects, Cell Cycle/drug effects, Cell Death/drug effects, Cell Proliferation, DNA adducts, DNA Damage, DNA damage response, Liver/*pathology, Lung/*pathology, Male, Mutagens/*toxicity, PAHs, Particulate Matter/*toxicity, Prostate/*pathology, Rats, Receptors, SRM 1650b, Vehicle Emissions/*toxicity
@article{palkova_aryl_2015,
title = {The aryl hydrocarbon receptor-mediated and genotoxic effects of fractionated extract of standard reference diesel exhaust particle material in pulmonary, liver and prostate cells.},
author = {Lenka Pálková and Jan Vondráček and Lenka Trilecová and Miroslav Ciganek and Kateřina Pěnčíková and Jiří Neča and Alena Milcová and Jan Topinka and Miroslav Machala},
doi = {10.1016/j.tiv.2014.12.002},
issn = {1879-3177 0887-2333},
year = {2015},
date = {2015-04-01},
journal = {Toxicology in vitro : an international journal published in association with BIBRA},
volume = {29},
number = {3},
pages = {438–448},
abstract = {Diesel exhaust particles (DEP) and the associated complex mixtures of organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), or their derivatives, have been suggested to exert deleterious effects on human health. We used a set of defined cellular models representing liver, lung and prostate tissues, in order to compare non-genotoxic and genotoxic effects of crude and fractionated extract of a standard reference DEP material - SRM 1650b. We focused on the aryl hydrocarbon receptor (AhR)-mediated activity, modulation of cell proliferation, formation of DNA adducts, oxidative DNA damage, and induction of DNA damage responses, including evaluation of apoptosis, and phosphorylation of p53 tumor suppressor and checkpoint kinases (Chk). Both PAHs and the polar aromatic compounds contributed to the AhR-mediated activity of DEP-associated organic pollutants. The principal identified AhR agonists included benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene, chrysene and several non-priority PAHs, including benzochrysenes and methylated PAHs. In contrast to PAHs, polar compounds contributed more significantly to overall formation of DNA adducts associated with phosphorylation of p53, Chk1 or Chk2, and partly with apoptosis. Therefore, more attention should be paid to identification of DEP-associated polar organic compounds, contributing to the AhR activation and cytotoxic/genotoxic effects of complex airborne mixtures of organic contaminants produced by diesel engines.},
note = {Place: England},
keywords = {Air Pollutants/*toxicity, Air pollution, Animals, Apoptosis, Apoptosis/drug effects, Aryl Hydrocarbon/*drug effects, Cell Cycle/drug effects, Cell Death/drug effects, Cell Proliferation, DNA adducts, DNA Damage, DNA damage response, Liver/*pathology, Lung/*pathology, Male, Mutagens/*toxicity, PAHs, Particulate Matter/*toxicity, Prostate/*pathology, Rats, Receptors, SRM 1650b, Vehicle Emissions/*toxicity},
pubstate = {published},
tppubtype = {article}
}
Kabátková, Markéta; Svobodová, Jana; Pěnčíková, Kateřina; Mohatad, Dilshad Shaik; Šmerdová, Lenka; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Toxicology letters, vol. 232, no. 1, pp. 113–121, 2015, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/genetics/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/genetics/metabolism, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects, Cell Transformation, Connexin 43/genetics/metabolism, Dose-Response Relationship, Drug, Enzyme Activation, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/*toxicity, Gap junctions, Gap Junctions/*drug effects/metabolism/pathology, Gene Expression Regulation/drug effects, Genetic/*drug effects, Inflammation, Inflammation/chemically induced/genetics/metabolism/pathology, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Molecular Weight, Neoplastic/chemically induced/metabolism/pathology, p38 Mitogen-Activated Protein Kinases/metabolism, PAHs, Rats, Receptors, Signal Transduction/drug effects, Time Factors, Transcription, Tumor Necrosis Factor-alpha/*toxicity
@article{kabatkova_interactive_2015,
title = {Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription.},
author = {Markéta Kabátková and Jana Svobodová and Kateřina Pěnčíková and Dilshad Shaik Mohatad and Lenka Šmerdová and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.toxlet.2014.09.023},
issn = {1879-3169 0378-4274},
year = {2015},
date = {2015-01-01},
journal = {Toxicology letters},
volume = {232},
number = {1},
pages = {113–121},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) with lower molecular weight exhibit lesser genotoxicity and carcinogenicity than highly carcinogenic PAHs with a higher number of benzene rings. Nevertheless, they elicit specific effects linked with tumor promotion, such as acute inhibition of gap junctional intercellular communication (GJIC). Although inflammatory reaction may alter bioactivation and toxicity of carcinogenic PAHs, little is known about the impact of pro-inflammatory cytokines on toxic effects of the low-molecular-weight PAHs. Here, we investigated the impact of a pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), on the effects associated with tumor promotion and with induction of the aryl hydrocarbon receptor (AhR)-dependent gene expression in rat liver epithelial cells. We found that a prolonged incubation with TNF-α induced a down-regulation of GJIC, associated with reduced expression of connexin 43 (Cx43), a major connexin isoform found in liver epithelial cells. The Cx43 down-regulation was partly mediated by the activity of the mitogen-activated protein (MAP) p38 kinase. Independently of GJIC modulation, or p38 activation, TNF-α potentiated the AhR-dependent proliferative effect of a model low-molecular-weight PAH, fluoranthene, on contact-inhibited cells. In contrast, this pro-inflammatory cytokine repressed the fluoranthene-induced expression of a majority of model AhR gene targets, such as Cyp1a1, Ahrr or Tiparp. The results of the present study indicate that inflammatory reaction may differentially modulate various toxic effects of low-molecular-weight PAHs; the exposure to pro-inflammatory cytokines may both strengthen (inhibition of GJIC, disruption of contact inhibition) and repress (expression of a majority of AhR-dependent genes) their impact on toxic endpoints associated with carcinogenesis.},
note = {Place: Netherlands},
keywords = {Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/genetics/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/genetics/metabolism, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects, Cell Transformation, Connexin 43/genetics/metabolism, Dose-Response Relationship, Drug, Enzyme Activation, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/*toxicity, Gap junctions, Gap Junctions/*drug effects/metabolism/pathology, Gene Expression Regulation/drug effects, Genetic/*drug effects, Inflammation, Inflammation/chemically induced/genetics/metabolism/pathology, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Molecular Weight, Neoplastic/chemically induced/metabolism/pathology, p38 Mitogen-Activated Protein Kinases/metabolism, PAHs, Rats, Receptors, Signal Transduction/drug effects, Time Factors, Transcription, Tumor Necrosis Factor-alpha/*toxicity},
pubstate = {published},
tppubtype = {article}
}
2014
Ghorbanzadeh, Mehdi; Ede, Karin I.; Larsson, Malin; Duursen, Majorie B. M.; Poellinger, Lorenz; Lücke-Johansson, Sandra; Machala, Miroslav; Pěnčíková, Kateřina; Vondráček, Jan; Berg, Martin; Denison, Michael S.; Ringsted, Tine; Andersson, Patrik L.
In: Chemical research in toxicology, vol. 27, no. 7, pp. 1120–1132, 2014, ISSN: 1520-5010 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/agonists/*metabolism, Benzofurans/*pharmacology, Biological, Biological Assay, Cell Line, Computer Simulation, Dibenzofurans, Dose-Response Relationship, Drug, Guinea Pigs, Luciferases/metabolism, Mice, Models, Polychlorinated, Polychlorinated Biphenyls/*pharmacology, Polychlorinated Dibenzodioxins/*analogs & derivatives/pharmacology, Quantitative Structure-Activity Relationship, Rats, Receptors, Tumor
@article{ghorbanzadeh_vitro_2014,
title = {In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines.},
author = {Mehdi Ghorbanzadeh and Karin I. Ede and Malin Larsson and Majorie B. M. Duursen and Lorenz Poellinger and Sandra Lücke-Johansson and Miroslav Machala and Kateřina Pěnčíková and Jan Vondráček and Martin Berg and Michael S. Denison and Tine Ringsted and Patrik L. Andersson},
doi = {10.1021/tx5001255},
issn = {1520-5010 0893-228X},
year = {2014},
date = {2014-07-01},
journal = {Chemical research in toxicology},
volume = {27},
number = {7},
pages = {1120–1132},
abstract = {For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congeners tested in the rodent cell lines were partial agonists and less efficacious than 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For this reason, REPs were calculated for each congener using concentrations at which 20% of the maximal TCDD response was reached (REP20TCDD). REP20TCDD values obtained for PCDD/Fs were comparable with their toxic equivalency factors assigned by the World Health Organization (WHO-TEF), while those for PCBs were in general lower than the WHO-TEF values. Moreover, the guinea pig cell line was the most sensitive as indicated by the 20% effect concentrations of TCDD of 1.5, 5.6, and 11.0 pM for guinea pig, rat, and mouse cells, respectively. A similar response pattern was observed using multivariate statistical analysis between the three CALUX assays and the WHO-TEFs. The mouse assay showed minor deviation due to higher relative induction potential for 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,6,7,8-hexachlorodibenzofuran and lower for 1,2,3,4,6,7,8-heptachlorodibenzofuran and 3,3',4,4',5-pentachlorobiphenyl (PCB126). 2,3,7,8-Tetrachlorodibenzofuran was more than two times more potent in the mouse assay as compared with that of rat and guinea pig cells, while measured REP20TCDD for PCB126 was lower in mouse cells (0.05) as compared with that of the guinea pig (0.2) and rat (0.07). In order to provide REP20TCDD values for all WHO-TEF assigned compounds, quantitative structure-activity relationship (QSAR) models were developed. The QSAR models showed that specific electronic properties and molecular surface characteristics play important roles in the AhR-mediated response. In silico derived REP20TCDD values were generally consistent with the WHO-TEFs with a few exceptions. The QSAR models indicated that, e.g., 1,2,3,7,8-pentachlorodibenzofuran and 1,2,3,7,8,9-hexachlorodibenzofuran were more potent than given by their assigned WHO-TEF values, and the non-ortho PCB 81 was predicted, based on the guinea-pig model, to be 1 order of magnitude above its WHO-TEF value. By combining in vitro and in silico approaches, REPs were established for all WHO-TEF assigned compounds (except OCDD), which will provide future guidance in testing AhR-mediated responses of DLCs and to increase our understanding of species variation in AhR-mediated effects.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon/agonists/*metabolism, Benzofurans/*pharmacology, Biological, Biological Assay, Cell Line, Computer Simulation, Dibenzofurans, Dose-Response Relationship, Drug, Guinea Pigs, Luciferases/metabolism, Mice, Models, Polychlorinated, Polychlorinated Biphenyls/*pharmacology, Polychlorinated Dibenzodioxins/*analogs & derivatives/pharmacology, Quantitative Structure-Activity Relationship, Rats, Receptors, Tumor},
pubstate = {published},
tppubtype = {article}
}
Pernicová, Zuzana; Slabáková, Eva; Fedr, Radek; Šimečková, Šárka; Jaroš, Josef; Suchánková, Tereza; Bouchal, Jan; Kharaishvili, Gvantsa; Král, Milan; Kozubík, Alois; Souček, Karel
The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Journal Article
In: Molecular cancer, vol. 13, pp. 113, 2014, ISSN: 1476-4598, (Place: England).
Abstract | Links | BibTeX | Tags: *Cell Transdifferentiation/drug effects, Androgen/metabolism, Androgens/pharmacology, CDC2 Protein Kinase, Cell Count, Cell Cycle Checkpoints/drug effects, Cell Line, Cyclic AMP/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cyclin-Dependent Kinases/metabolism, Epithelial Cells/drug effects/enzymology/pathology, Humans, Immunohistochemistry, Male, Neuroendocrine Cells/drug effects/*pathology, Prostatic Neoplasms/*pathology, Protein Kinase Inhibitors/pharmacology, Receptors, Signal Transduction/drug effects, Tumor
@article{pernicova_role_2014,
title = {The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells.},
author = {Zuzana Pernicová and Eva Slabáková and Radek Fedr and Šárka Šimečková and Josef Jaroš and Tereza Suchánková and Jan Bouchal and Gvantsa Kharaishvili and Milan Král and Alois Kozubík and Karel Souček},
doi = {10.1186/1476-4598-13-113},
issn = {1476-4598},
year = {2014},
date = {2014-05-01},
journal = {Molecular cancer},
volume = {13},
pages = {113},
abstract = {BACKGROUND: Tumor heterogeneity and the plasticity of cancer cells present challenges for effective clinical diagnosis and therapy. Such challenges are epitomized by neuroendocrine transdifferentiation (NED) and the emergence of neuroendocrine-like cancer cells in prostate tumors. This phenomenon frequently arises from androgen-depleted prostate adenocarcinoma and is associated with the development of castration-resistant prostate cancer and poor prognosis. RESULTS: In this study, we showed that NED was evoked in both androgen receptor (AR)-positive and AR-negative prostate epithelial cell lines by growing the cells to a high density. Androgen depletion and high-density cultivation were both associated with cell cycle arrest and deregulated expression of several cell cycle regulators, such as p27Kip1, members of the cyclin D protein family, and Cdk2. Dual inhibition of Cdk1 and Cdk2 using pharmacological inhibitor or RNAi led to modulation of the cell cycle and promotion of NED. We further demonstrated that the cyclic adenosine 3', 5'-monophosphate (cAMP)-mediated pathway is activated in the high-density conditions. Importantly, inhibition of cAMP signaling using a specific inhibitor of adenylate cyclase, MDL-12330A, abolished the promotion of NED by high cell density. CONCLUSIONS: Taken together, our results imply a new relationship between cell cycle attenuation and promotion of NED and suggest high cell density as a trigger for cAMP signaling that can mediate reversible NED in prostate cancer cells.},
note = {Place: England},
keywords = {*Cell Transdifferentiation/drug effects, Androgen/metabolism, Androgens/pharmacology, CDC2 Protein Kinase, Cell Count, Cell Cycle Checkpoints/drug effects, Cell Line, Cyclic AMP/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cyclin-Dependent Kinases/metabolism, Epithelial Cells/drug effects/enzymology/pathology, Humans, Immunohistochemistry, Male, Neuroendocrine Cells/drug effects/*pathology, Prostatic Neoplasms/*pathology, Protein Kinase Inhibitors/pharmacology, Receptors, Signal Transduction/drug effects, Tumor},
pubstate = {published},
tppubtype = {article}
}
2013
Procházková, Jiřina; Kabátková, Markéta; Šmerdová, Lenka; Pacherník, Jiří; Sykorová, Dominika; Kohoutek, Jiří; Šimečková, Pavlína; Hrubá, Eva; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
Aryl hydrocarbon receptor negatively regulates expression of the plakoglobin gene (jup). Journal Article
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 134, no. 2, pp. 258–270, 2013, ISSN: 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*physiology, Base Sequence, cardiomyocytes., Cell Adhesion, Cell Line, Cell Proliferation, Cloning, desmosomes, dioxin, DNA Primers, Down-Regulation, gamma Catenin/*genetics, Gene Expression Regulation/*physiology, Genetic, Inbred F344, liver progenitor cells, Molecular, plakoglobin, Polychlorinated Dibenzodioxins/pharmacology, Promoter Regions, Rats, Real-Time Polymerase Chain Reaction, Receptors
@article{prochazkova_aryl_2013,
title = {Aryl hydrocarbon receptor negatively regulates expression of the plakoglobin gene (jup).},
author = {Jiřina Procházková and Markéta Kabátková and Lenka Šmerdová and Jiří Pacherník and Dominika Sykorová and Jiří Kohoutek and Pavlína Šimečková and Eva Hrubá and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1093/toxsci/kft110},
issn = {1096-0929},
year = {2013},
date = {2013-08-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {134},
number = {2},
pages = {258–270},
abstract = {Plakoglobin is an important component of intercellular junctions, including both desmosomes and adherens junctions, which is known as a tumor suppressor. Although mutations in the plakoglobin gene (Jup) and/or changes in its protein levels have been observed in various disease states, including cancer progression or cardiovascular defects, the information about endogenous or exogenous stimuli orchestrating Jup expression is limited. Here we show that the aryl hydrocarbon receptor (AhR) may regulate Jup expression in a cell-specific manner. We observed a significant suppressive effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model toxic exogenous activator of the AhR signaling, on Jup expression in a variety of experimental models derived from rodent tissues, including contact-inhibited rat liver progenitor cells (where TCDD induces cell proliferation), rat and mouse hepatoma cell models (where TCDD inhibits cell cycle progression), cardiac cells derived from the mouse embryonic stem cells, or cardiomyocytes isolated from neonatal rat hearts. The small interfering RNA (siRNA)-mediated knockdown of AhR confirmed its role in both basal and TCDD-deregulated Jup expression. The analysis of genomic DNA located textasciitilde2.5kb upstream of rat Jup gene revealed a presence of evolutionarily conserved AhR binding motifs, which were confirmed upon their cloning into luciferase reporter construct. The siRNA-mediated knockdown of Jup expression affected both proliferation and attachment of liver progenitor cells. The present data indicate that the AhR may contribute to negative regulation of Jup gene expression in rodent cellular models, which may affect cell adherence and proliferation.},
note = {Place: United States},
keywords = {Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*physiology, Base Sequence, cardiomyocytes., Cell Adhesion, Cell Line, Cell Proliferation, Cloning, desmosomes, dioxin, DNA Primers, Down-Regulation, gamma Catenin/*genetics, Gene Expression Regulation/*physiology, Genetic, Inbred F344, liver progenitor cells, Molecular, plakoglobin, Polychlorinated Dibenzodioxins/pharmacology, Promoter Regions, Rats, Real-Time Polymerase Chain Reaction, Receptors},
pubstate = {published},
tppubtype = {article}
}
Faust, Dagmar; Vondráček, Jan; Krčmář, Pavel; Smerdová, Lenka; Procházková, Jiřina; Hrubá, Eva; Hulinková, Petra; Kaina, Bernd; Dietrich, Cornelia; Machala, Miroslav
AhR-mediated changes in global gene expression in rat liver progenitor cells. Journal Article
In: Archives of toxicology, vol. 87, no. 4, pp. 681–698, 2013, ISSN: 1432-0738 0340-5761, (Place: Germany).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*genetics/metabolism, Cell Line, Epithelial Cells/drug effects/*metabolism/pathology, Estrogen Antagonists/toxicity, Gene Expression Regulation/drug effects/*genetics, Gene Knockdown Techniques, Liver/drug effects/*metabolism/pathology, Oligonucleotide Array Sequence Analysis, Polychlorinated Biphenyls/toxicity, Rats, Receptors, Stem Cells/drug effects/*metabolism/pathology
@article{faust_ahr-mediated_2013,
title = {AhR-mediated changes in global gene expression in rat liver progenitor cells.},
author = {Dagmar Faust and Jan Vondráček and Pavel Krčmář and Lenka Smerdová and Jiřina Procházková and Eva Hrubá and Petra Hulinková and Bernd Kaina and Cornelia Dietrich and Miroslav Machala},
doi = {10.1007/s00204-012-0979-z},
issn = {1432-0738 0340-5761},
year = {2013},
date = {2013-04-01},
journal = {Archives of toxicology},
volume = {87},
number = {4},
pages = {681–698},
abstract = {Although the tumor-promoting effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), coplanar polychlorinated biphenyls (PCBs), and related compounds in liver tissue are primarily attributed to the activation of the aryl hydrocarbon receptor (AhR), the underlying molecular mechanisms are still unclear. Liver progenitor (oval) cells have been suggested to constitute a potential target for hepatocarcinogenic chemicals. To better understand AhR-driven pathways, we analyzed the transcriptional program in response to coplanar PCB 126 in contact-inhibited rat liver progenitor WB-F344 cells using high-density microarrays. After 6-h treatment, we identified 145 significantly deregulated genes considered to be direct AhR-dependent target genes. The number of differentially regulated genes increased to 658 and 968 genes after 24 and 72 h, respectively. Gene ontology analysis revealed that these genes were primarily involved in drug and lipid metabolism, cell cycle and growth control, cancer developmental processes, cell-cell communication, and adhesion. Interestingly, the Wnt and TGF-β signaling pathways, both being involved in developmental and tumorigenic processes, belonged to the most affected pathways. AhR- and ARNT-dependent regulation of selected target genes of interest was then confirmed using TCDD as a model AhR agonist, together with pharmacological inhibition of the AhR and by RNA-interference techniques. We demonstrated AhR-dependent regulation of emerging and novel AhR target genes, such as Fst, Areg, Hbegf, Ctgf, Btg2, and Foxq1. Among them, the transcription factor Foxq1, recently suggested to contribute to tumor promotion and/or progression, was found to be regulated at both mRNA and protein levels by AhR/ARNT activation.},
note = {Place: Germany},
keywords = {Animals, Aryl Hydrocarbon/*genetics/metabolism, Cell Line, Epithelial Cells/drug effects/*metabolism/pathology, Estrogen Antagonists/toxicity, Gene Expression Regulation/drug effects/*genetics, Gene Knockdown Techniques, Liver/drug effects/*metabolism/pathology, Oligonucleotide Array Sequence Analysis, Polychlorinated Biphenyls/toxicity, Rats, Receptors, Stem Cells/drug effects/*metabolism/pathology},
pubstate = {published},
tppubtype = {article}
}
Andrysík, Zdeněk; Procházková, Jiřina; Kabátková, Markéta; Umannová, Lenka; Simečková, Pavlína; Kohoutek, Jiří; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Archives of toxicology, vol. 87, no. 3, pp. 491–503, 2013, ISSN: 1432-0738 0340-5761, (Place: Germany).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*agonists/genetics/metabolism, Benz(a)Anthracenes/toxicity, Carcinogens/*toxicity, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Transformation, Connexin 43/genetics/*metabolism, Contact Inhibition/*drug effects, Dose-Response Relationship, Down-Regulation, Drug, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/toxicity, Gap Junctions/*drug effects/metabolism/pathology, Gene Knockdown Techniques, Indoles/pharmacology, Ligands, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Neoplastic/chemically induced/metabolism/pathology, Phloroglucinol/analogs & derivatives/pharmacology, Phosphorylation, Polychlorinated Dibenzodioxins/toxicity, Proteasome Endopeptidase Complex/metabolism, Rats, Receptors, RNA Interference, Signal Transduction/*drug effects, Time Factors, Transfection
@article{andrysik_aryl_2013,
title = {Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication.},
author = {Zdeněk Andrysík and Jiřina Procházková and Markéta Kabátková and Lenka Umannová and Pavlína Simečková and Jiří Kohoutek and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1007/s00204-012-0963-7},
issn = {1432-0738 0340-5761},
year = {2013},
date = {2013-03-01},
journal = {Archives of toxicology},
volume = {87},
number = {3},
pages = {491–503},
abstract = {The aryl hydrocarbon receptor (AhR) contributes to the control of cell-to-cell communication, cell adhesion, migration or proliferation. In the present study, we investigated the regulation of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) during the AhR-dependent disruption of contact inhibition in non-tumorigenic liver epithelial cells. The contact inhibition of cell proliferation is a process restricting the cell division of confluent non-transformed cells, which is frequently abolished in cancer cells; however, the mechanisms contributing to its disruption are still only partially understood. Disruption of contact inhibition, which was induced by toxic AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or polycyclic aromatic hydrocarbons in epithelial WB-F344 cells, reduced Cx43 protein levels, possibly via enhanced proteasomal degradation, significantly decreased the amount of gap junction plaques and downregulated GJIC, in an AhR-dependent manner. Although both intracellular and membrane Cx43 pools were markedly reduced in cells released from contact inhibition by TCDD, siRNA-mediated Cx43 knock-down was not sufficient to stimulate proliferation in contact-inhibited cells. Our data suggest that downregulation of Cx43/GJIC in non-transformed epithelial cells is an inherent part of disruption of contact inhibition, which occurs at the post-transcriptional level. This process runs in parallel with alterations of other forms of cell-to-cell communication, thus suggesting that toxic AhR agonists may simultaneously abrogate contact inhibition and reduce GJIC, two essential mechanisms linked to deregulation of cell-to-cell communication during tumor promotion and progression.},
note = {Place: Germany},
keywords = {Animals, Aryl Hydrocarbon/*agonists/genetics/metabolism, Benz(a)Anthracenes/toxicity, Carcinogens/*toxicity, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Transformation, Connexin 43/genetics/*metabolism, Contact Inhibition/*drug effects, Dose-Response Relationship, Down-Regulation, Drug, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/toxicity, Gap Junctions/*drug effects/metabolism/pathology, Gene Knockdown Techniques, Indoles/pharmacology, Ligands, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Neoplastic/chemically induced/metabolism/pathology, Phloroglucinol/analogs & derivatives/pharmacology, Phosphorylation, Polychlorinated Dibenzodioxins/toxicity, Proteasome Endopeptidase Complex/metabolism, Rats, Receptors, RNA Interference, Signal Transduction/*drug effects, Time Factors, Transfection},
pubstate = {published},
tppubtype = {article}
}
2012
Staršíchová, Andrea; Hrubá, Eva; Slabáková, Eva; Pernicová, Zuzana; Procházková, Jiřina; Pěnčíková, Kateřina; Seda, Václav; Kabátková, Markéta; Vondráček, Jan; Kozubík, Alois; Machala, Miroslav; Souček, Karel
TGF-β1 signaling plays a dominant role in the crosstalk between TGF-β1 and the aryl hydrocarbon receptor ligand in prostate epithelial cells. Journal Article
In: Cellular signalling, vol. 24, no. 8, pp. 1665–1676, 2012, ISSN: 1873-3913 0898-6568, (Place: England).
Abstract | Links | BibTeX | Tags: Aryl Hydrocarbon/antagonists & inhibitors/genetics/metabolism, Cells, Cultured, Epithelial Cells/*drug effects/*metabolism, Humans, Ligands, Male, Polychlorinated Dibenzodioxins/*pharmacology, Prostate/*cytology, Receptors, Recombinant Proteins/metabolism, Signal Transduction/*drug effects, Transforming Growth Factor beta1/genetics/*metabolism
@article{starsichova_tgf-1_2012,
title = {TGF-β1 signaling plays a dominant role in the crosstalk between TGF-β1 and the aryl hydrocarbon receptor ligand in prostate epithelial cells.},
author = {Andrea Staršíchová and Eva Hrubá and Eva Slabáková and Zuzana Pernicová and Jiřina Procházková and Kateřina Pěnčíková and Václav Seda and Markéta Kabátková and Jan Vondráček and Alois Kozubík and Miroslav Machala and Karel Souček},
doi = {10.1016/j.cellsig.2012.04.008},
issn = {1873-3913 0898-6568},
year = {2012},
date = {2012-08-01},
journal = {Cellular signalling},
volume = {24},
number = {8},
pages = {1665–1676},
abstract = {Crosstalk between the aryl hydrocarbon receptor (AhR) and transforming growth factor-β1 (TGF-β1) signaling has been observed in various experimental models. However, both molecular mechanism underlying this crosstalk and tissue-specific context of this interaction are still only partially understood. In a model of human non-tumorigenic prostate epithelial cells BPH-1, derived from the benign prostatic hyperplasia, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) persistently activates the AhR signaling pathway and induces expression of xenobiotic metabolizing enzymes, such as CYP1A1 or CYP1B1. Here we demonstrate that TGF-β1 suppresses the AhR-mediated gene expression through multiple mechanisms, involving inhibition of AhR expression and down-regulation of nuclear AhR, via a SMAD4-dependent pathway. In contrast, TCDD-induced AhR signaling does not affect either TGF-β1-regulated gene expression or epithelial-to-mesenchymal transition. These observations suggest that, in the context of prostate epithelium, TGF-β1 signaling plays a dominant role in the crosstalk with AhR signaling pathway. Given the importance of TGF-β1 signaling in regulation of prostate epithelial tissue homeostasis, as well as the recently revealed role of AhR in prostate development and tumorigenesis, the above findings contribute to our understanding of the mechanisms underlying the crosstalk between the two signaling pathways in the prostate-specific context.},
note = {Place: England},
keywords = {Aryl Hydrocarbon/antagonists & inhibitors/genetics/metabolism, Cells, Cultured, Epithelial Cells/*drug effects/*metabolism, Humans, Ligands, Male, Polychlorinated Dibenzodioxins/*pharmacology, Prostate/*cytology, Receptors, Recombinant Proteins/metabolism, Signal Transduction/*drug effects, Transforming Growth Factor beta1/genetics/*metabolism},
pubstate = {published},
tppubtype = {article}
}
2011
Hrubá, Eva; Vondráček, Jan; Líbalová, Helena; Topinka, Jan; Bryja, Vítězslav; Souček, Karel; Machala, Miroslav
Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands. Journal Article
In: Toxicology letters, vol. 206, no. 2, pp. 178–188, 2011, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Aryl Hydrocarbon/*agonists, Benzo(a)pyrene/*toxicity, Carcinogens, Carcinoma/metabolism, Cell Cycle/drug effects, Cell Line, DNA Repair/drug effects, DNA Replication/drug effects, Environmental/*toxicity, Gene Expression Profiling, Gene Expression Regulation, Humans, Ligands, Male, Mutagens/*toxicity, Neoplastic/*drug effects, Oligonucleotide Array Sequence Analysis, Polychlorinated Dibenzodioxins/*toxicity, Prostatic Neoplasms/*metabolism, Proto-Oncogene Proteins/genetics/metabolism, Receptors, Spindle Apparatus/drug effects, Time Factors, Tumor, Wnt Proteins/genetics/metabolism, Wnt-5a Protein
@article{hruba_gene_2011,
title = {Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands.},
author = {Eva Hrubá and Jan Vondráček and Helena Líbalová and Jan Topinka and Vítězslav Bryja and Karel Souček and Miroslav Machala},
doi = {10.1016/j.toxlet.2011.07.011},
issn = {1879-3169 0378-4274},
year = {2011},
date = {2011-10-01},
journal = {Toxicology letters},
volume = {206},
number = {2},
pages = {178–188},
abstract = {Carcinogenic polycyclic aromatic hydrocarbons (PAHs) are known as efficient mutagens and ligands of the aryl hydrocarbon receptor (AhR), which has been suggested to play an important role in prostate carcinogenesis. In order to evaluate the complex relationship between the genotoxicity and the AhR-mediated activity of PAHs in prostate cells, we selected benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), as model genotoxic and nongenotoxic AhR ligands, respectively, to explore global changes in gene expression in LNCaP cells by microarray analysis. We identified 112 genes that were differentially expressed in cells treated for 24h with BaP, TCDD or both compounds. Our data indicated that the impacts of BaP and TCDD on transcriptome of LNCaP cells significantly overlap, since over 64% of significantly up-regulated genes and 47% of down-regulated genes were similarly affected by both AhR ligands. This suggested that the activation of AhR played a prominent role in the nongenotoxic effects of BaP in the prostate carcinoma cell model LNCaP. Both AhR ligands suppressed expression of genes associated with cell cycle progression, DNA replication, spindle assembly checkpoint or DNA repair, which probably occurred secondary to inhibition of cell cycle progression. In contrast, we identified Wnt5a, an important regulator of prostate cancer progression, to be induced as early as 6h after exposure to both AhR ligands. The AhR ligand-induced Wnt5a upregulation, together with other observed alterations of gene expression, may further contribute to enhanced cell plasticity of prostate carcinoma cells.},
note = {Place: Netherlands},
keywords = {Aryl Hydrocarbon/*agonists, Benzo(a)pyrene/*toxicity, Carcinogens, Carcinoma/metabolism, Cell Cycle/drug effects, Cell Line, DNA Repair/drug effects, DNA Replication/drug effects, Environmental/*toxicity, Gene Expression Profiling, Gene Expression Regulation, Humans, Ligands, Male, Mutagens/*toxicity, Neoplastic/*drug effects, Oligonucleotide Array Sequence Analysis, Polychlorinated Dibenzodioxins/*toxicity, Prostatic Neoplasms/*metabolism, Proto-Oncogene Proteins/genetics/metabolism, Receptors, Spindle Apparatus/drug effects, Time Factors, Tumor, Wnt Proteins/genetics/metabolism, Wnt-5a Protein},
pubstate = {published},
tppubtype = {article}
}
Andrysík, Zdeněk; Vondráček, Jan; Marvanová, Soňa; Ciganek, Miroslav; Neča, Jiří; Pěnčíková, Kateřina; Mahadevan, Brinda; Topinka, Jan; Baird, William M.; Kozubík, Alois; Machala, Miroslav
In: Mutation research, vol. 714, no. 1-2, pp. 53–62, 2011, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/metabolism, DNA Adducts/drug effects, DNA Damage/*drug effects, Dose-Response Relationship, Drug, Genes, Liver/drug effects, Mutagens/*toxicity, Organic Chemicals/*toxicity, p53/drug effects, Particulate Matter/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors
@article{andrysik_activation_2011,
title = {Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons.},
author = {Zdeněk Andrysík and Jan Vondráček and Soňa Marvanová and Miroslav Ciganek and Jiří Neča and Kateřina Pěnčíková and Brinda Mahadevan and Jan Topinka and William M. Baird and Alois Kozubík and Miroslav Machala},
doi = {10.1016/j.mrfmmm.2011.06.011},
issn = {0027-5107},
year = {2011},
date = {2011-09-01},
journal = {Mutation research},
volume = {714},
number = {1-2},
pages = {53–62},
abstract = {Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction of the AhR-mediated transcription, such as cytochrome P450 1A1/1B1 expression, and the AhR-dependent cell proliferation. Importantly, these toxic events occurred at doses one order of magnitude lower than DNA damage. The AhR-mediated activity of the neutral fraction was linked to PAHs and their derivatives, as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls were only minor contributors to the overall AhR-mediated activity. Taken together, our data suggest that more attention should be paid to the AhR-dependent nongenotoxic events elicited by urban PM constituents, especially PAHs and their derivatives.},
note = {Place: Netherlands},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/metabolism, DNA Adducts/drug effects, DNA Damage/*drug effects, Dose-Response Relationship, Drug, Genes, Liver/drug effects, Mutagens/*toxicity, Organic Chemicals/*toxicity, p53/drug effects, Particulate Matter/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jirina; Kabátková, Markéta; Bryja, Vítezslav; Umannová, Lenka; Bernatík, Ondrej; Kozubík, Alois; Machala, Miroslav; Vondrácek, Jan
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 122, no. 2, pp. 349–360, 2011, ISSN: 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon Hydroxylases/genetics/metabolism, Aryl Hydrocarbon/genetics/*metabolism, beta Catenin/genetics/*metabolism, Cadherins/genetics, Cell Adhesion, Cell Differentiation, Cell Line, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, Down-Regulation/drug effects, Hepatocytes/drug effects, Inbred F344, Liver/*drug effects, Polychlorinated Dibenzodioxins/toxicity, Rats, Receptors, Wnt Proteins/genetics/*metabolism, Wnt Signaling Pathway
@article{prochazkova_interplay_2011,
title = {The interplay of the aryl hydrocarbon receptor and β-catenin alters both AhR-dependent transcription and Wnt/β-catenin signaling in liver progenitors.},
author = {Jirina Procházková and Markéta Kabátková and Vítezslav Bryja and Lenka Umannová and Ondrej Bernatík and Alois Kozubík and Miroslav Machala and Jan Vondrácek},
doi = {10.1093/toxsci/kfr129},
issn = {1096-0929},
year = {2011},
date = {2011-08-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {122},
number = {2},
pages = {349–360},
abstract = {β-catenin is a key integrator of cadherin-mediated cell-cell adhesion and transcriptional regulation through the Wnt/β-catenin pathway, which plays an important role in liver biology. Using a model of contact-inhibited liver progenitor cells, we examined the interactions of Wnt/β-catenin signaling with the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, which mediates the toxicity of dioxin-like compounds, including their effects on development and hepatocarcinogenesis. We found that AhR and Wnt/β-catenin cooperated in the induction of AhR transcriptional targets, such as Cyp1a1 and Cyp1b1. However, simultaneously, the activation of AhR led to a decrease of dephosphorylated active β-catenin pool, as well as to hypophosphorylation of Dishevelled, participating in regulation of Wnt signaling. A sustained AhR activation by its model ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), led to a downregulation of a number of Wnt/β-catenin pathway target genes. TCDD also induced a switch in cytokeratin expression, where downregulation of cytokeratins 14 and 19 was accompanied with an increased cytokeratin 8 expression. Together with a downregulation of additional markers associated with stem-like phenotype, this indicated that the AhR activation interfered with differentiation of liver progenitors. The downregulation of β-catenin was also related to a reduced cell adhesion, disruption of E-cadherin-mediated cell-cell junctions and an increased G1-S transition in liver progenitor cell line. In conclusion, although β-catenin augmented the expression of selected AhR target genes, the persistent AhR activation may lead to downregulation of Wnt/β-catenin signaling, thus altering differentiation and/or proliferative status of liver progenitor cells.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon Hydroxylases/genetics/metabolism, Aryl Hydrocarbon/genetics/*metabolism, beta Catenin/genetics/*metabolism, Cadherins/genetics, Cell Adhesion, Cell Differentiation, Cell Line, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, Down-Regulation/drug effects, Hepatocytes/drug effects, Inbred F344, Liver/*drug effects, Polychlorinated Dibenzodioxins/toxicity, Rats, Receptors, Wnt Proteins/genetics/*metabolism, Wnt Signaling Pathway},
pubstate = {published},
tppubtype = {article}
}
Pernicová, Zuzana; Slabáková, Eva; Kharaishvili, Gvantsa; Bouchal, Jan; Král, Milan; Kunická, Zuzana; Machala, Miroslav; Kozubík, Alois; Souček, Karel
Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Journal Article
In: Neoplasia (New York, N.Y.), vol. 13, no. 6, pp. 526–536, 2011, ISSN: 1476-5586 1522-8002, (Place: United States).
Abstract | Links | BibTeX | Tags: Androgen Antagonists/*pharmacology, Androgen/metabolism, beta-Galactosidase/metabolism, Blotting, Cathepsin B/metabolism, Cell Line, Cellular Senescence/*drug effects, Confocal, Down-Regulation/*drug effects, Flow Cytometry, Humans, Insulin-Like Growth Factor Binding Protein 3/metabolism, Male, Microscopy, Prostatic Neoplasms/genetics/metabolism/pathology, PTEN Phosphohydrolase/metabolism, Receptors, RNA Interference, S-Phase Kinase-Associated Proteins/genetics/*metabolism, Signal Transduction/drug effects, Tumor, Vimentin/metabolism, Western
@article{pernicova_androgen_2011,
title = {Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2.},
author = {Zuzana Pernicová and Eva Slabáková and Gvantsa Kharaishvili and Jan Bouchal and Milan Král and Zuzana Kunická and Miroslav Machala and Alois Kozubík and Karel Souček},
doi = {10.1593/neo.11182},
issn = {1476-5586 1522-8002},
year = {2011},
date = {2011-06-01},
journal = {Neoplasia (New York, N.Y.)},
volume = {13},
number = {6},
pages = {526–536},
abstract = {Although the induction of senescence in cancer cells is a potent mechanism of tumor suppression, senescent cells remain metabolically active and may secrete a broad spectrum of factors that promote tumorigenicity in neighboring malignant cells. Here we show that androgen deprivation therapy (ADT), a widely used treatment for advanced prostate cancer, induces a senescence-associated secretory phenotype in prostate cancer epithelial cells, indicated by increases in senescence-associated β-galactosidase activity, heterochromatin protein 1β foci, and expression of cathepsin B and insulin-like growth factor binding protein 3. Interestingly, ADT also induced high levels of vimentin expression in prostate cancer cell lines in vitro and in human prostate tumors in vivo. The induction of the senescence-associated secretory phenotype by androgen depletion was mediated, at least in part, by down-regulation of S-phase kinase-associated protein 2, whereas the neuroendocrine differentiation of prostate cancer cells was under separate control. These data demonstrate a previously unrecognized link between inhibition of androgen receptor signaling, down-regulation of S-phase kinase-associated protein 2, and the appearance of secretory, tumor-promoting senescent cells in prostate tumors. We propose that ADT may contribute to the development of androgen-independent prostate cancer through modulation of the tissue microenvironment by senescent cells.},
note = {Place: United States},
keywords = {Androgen Antagonists/*pharmacology, Androgen/metabolism, beta-Galactosidase/metabolism, Blotting, Cathepsin B/metabolism, Cell Line, Cellular Senescence/*drug effects, Confocal, Down-Regulation/*drug effects, Flow Cytometry, Humans, Insulin-Like Growth Factor Binding Protein 3/metabolism, Male, Microscopy, Prostatic Neoplasms/genetics/metabolism/pathology, PTEN Phosphohydrolase/metabolism, Receptors, RNA Interference, S-Phase Kinase-Associated Proteins/genetics/*metabolism, Signal Transduction/drug effects, Tumor, Vimentin/metabolism, Western},
pubstate = {published},
tppubtype = {article}
}
Trilecová, Lenka; Krčková, Simona; Marvanová, Soňa; Pĕnčíková, Kateřina; Krčmář, Pavel; Neča, Jiří; Hulinková, Petra; Pálková, Lenka; Ciganek, Miroslav; Milcová, Alena; Topinka, Jan; Vondráček, Jan; Machala, Miroslav
Toxic effects of methylated benzo[a]pyrenes in rat liver stem-like cells. Journal Article
In: Chemical research in toxicology, vol. 24, no. 6, pp. 866–876, 2011, ISSN: 1520-5010 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/*chemistry/*toxicity, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1, DNA Adducts/metabolism, Epithelial Cells/drug effects/metabolism, Gene Expression Regulation/drug effects, Liver/*cytology, Methylation, Mutagens/*chemistry/*toxicity, Oxidative Stress/drug effects, Protein Kinases/metabolism, Rats, Receptors, Stem Cells/drug effects/metabolism, Tumor, Tumor Suppressor Protein p53/metabolism
@article{trilecova_toxic_2011,
title = {Toxic effects of methylated benzo[a]pyrenes in rat liver stem-like cells.},
author = {Lenka Trilecová and Simona Krčková and Soňa Marvanová and Kateřina Pĕnčíková and Pavel Krčmář and Jiří Neča and Petra Hulinková and Lenka Pálková and Miroslav Ciganek and Alena Milcová and Jan Topinka and Jan Vondráček and Miroslav Machala},
doi = {10.1021/tx200049x},
issn = {1520-5010 0893-228X},
year = {2011},
date = {2011-06-01},
journal = {Chemical research in toxicology},
volume = {24},
number = {6},
pages = {866–876},
abstract = {The methylated benzo[a]pyrenes (MeBaPs) are present at significant levels in the environment, especially in the sediments contaminated by petrogenic PAHs. However, the existing data on their toxic effects in vitro and/or in vivo are still largely incomplete. Transcription factor AhR plays a key role in the metabolic activation of PAHs to genotoxic metabolites, but the AhR activation may also contribute to the tumor promoting effects of PAHs. In this study, the AhR-mediated activity of five selected MeBaP isomers was estimated in the DR-CALUX reporter gene assay performed in rat hepatoma cells. Detection of other effects, including induction of CYP1A1, CYP1B1, and AKR1C9 mRNAs, DNA adduct formation, production of reactive oxygen species, oxidation of deoxyguanosine, and cell cycle modulation and apoptosis, was performed in the rat liver epithelial WB-F344 cell line, a model of liver progenitor cells. We identified 1-MeBaP as the most potent inducer of AhR activation, stable DNA adduct formation, checkpoint kinase 1 and p53 phosphorylation, and apoptosis. These effects suggest that 1-MeBaP is a potent genotoxin eliciting a typical sequence of events ascribed to carcinogenic PAHs: induction of CYP1 enzymes, formation of high levels of DNA adducts, activation of DNA damage responses (including p53 phosphorylation), and cell death. In contrast, 10-MeBaP, representing BaP isomers substituted with the methyl group in the angular ring, elicited only low levels DNA adduct formation and apoptosis. Other MeBaPs under study also elicited strong apoptotic responses associated with DNA adduct formation as the prevalent mode of toxic action of these compounds in liver cells. MeBaPs induced a weak production of ROS, which did not lead to significant oxidative DNA damage. Importantly, 1-MeBaP and 3-MeBaP were found to be potent AhR agonists, one order of magnitude more potent than BaP, thus suggesting that the AhR-dependent modulations of gene expression, deregulation of cell survival mechanisms, and further nongenotoxic effects associated with AhR activation may further contribute to their tumor promotion and carcinogenicity.},
note = {Place: United States},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/*chemistry/*toxicity, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1, DNA Adducts/metabolism, Epithelial Cells/drug effects/metabolism, Gene Expression Regulation/drug effects, Liver/*cytology, Methylation, Mutagens/*chemistry/*toxicity, Oxidative Stress/drug effects, Protein Kinases/metabolism, Rats, Receptors, Stem Cells/drug effects/metabolism, Tumor, Tumor Suppressor Protein p53/metabolism},
pubstate = {published},
tppubtype = {article}
}
Varel, Urte Lübcke-von; Machala, Miroslav; Ciganek, Miroslav; Neca, Jiri; Pencikova, Katerina; Palkova, Lenka; Vondracek, Jan; Löffler, Ivonne; Streck, Georg; Reifferscheid, Georg; Flückiger-Isler, Sini; Weiss, Jana M.; Lamoree, Marja; Brack, Werner
Polar compounds dominate in vitro effects of sediment extracts. Journal Article
In: Environmental science & technology, vol. 45, no. 6, pp. 2384–2390, 2011, ISSN: 1520-5851 0013-936X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/analysis/chemistry, Biological Assay, Chemical Fractionation, Chemical/*analysis/chemistry/toxicity, Endocrine Disruptors/analysis/chemistry/toxicity, Environmental Monitoring, Geologic Sediments/*chemistry, Germany, Humans, Mutagens/analysis/chemistry/toxicity, Prealbumin/analysis/chemistry, Rats, Receptors, Toxicity Tests, Water Pollutants
@article{lubcke-von_varel_polar_2011,
title = {Polar compounds dominate in vitro effects of sediment extracts.},
author = {Urte Lübcke-von Varel and Miroslav Machala and Miroslav Ciganek and Jiri Neca and Katerina Pencikova and Lenka Palkova and Jan Vondracek and Ivonne Löffler and Georg Streck and Georg Reifferscheid and Sini Flückiger-Isler and Jana M. Weiss and Marja Lamoree and Werner Brack},
doi = {10.1021/es103381y},
issn = {1520-5851 0013-936X},
year = {2011},
date = {2011-03-01},
journal = {Environmental science & technology},
volume = {45},
number = {6},
pages = {2384–2390},
abstract = {Sediment extracts from three polluted sites of the river Elbe basin were fractionated using a novel online fractionation procedure. Resulting fractions were screened for mutagenic, aryl hydrocarbon receptor (AhR)-mediated, transthyretin (TTR)-binding, and estrogenic activities and their potency to inhibit gap junctional intercellular communication (GJIC) to compare toxicity patterns and identify priority fractions. Additionally, more than 200 compounds and compound classes were identified using GC-MS/MS, LC-MS/MS, and HPLC-DAD methods. For all investigated end points, major activities were found in polar fractions, which are defined here as fractions containing dominantly compounds with at least one polar functional group. Nonpolar PAH fractions contributed to mutagenic and AhR-mediated activities while inhibition of GJIC and estrogenic and TTR-binding activities were exclusively observed in the polar fractions. Known mutagens in polar fractions included nitro- and dinitro-PAHs, azaarenes, and keto-PAHs, while parent and monomethylated PAHs such as benzo[a]pyrene and benzofluoranthenes were identified in nonpolar fractions. Additionally, for one sample, high AhR-mediated activities were determined in one fraction characterized by PCDD/Fs, PCBs, and PCNs. Estrone, 17β-estradiol, 9H-benz[de]anthracen-7-one, and 4-nonylphenol were identified as possible estrogenic and TTR-binding compounds. Thus, not only nonpolar compounds such as PAHs, PCBs, and PCDD/Fs but also the less characterized and investigated more polar substances should be considered as potent mutagenic, estrogenic, AhR-inducing, TTR-binding, and GJIC-inhibiting components for future studies.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon/analysis/chemistry, Biological Assay, Chemical Fractionation, Chemical/*analysis/chemistry/toxicity, Endocrine Disruptors/analysis/chemistry/toxicity, Environmental Monitoring, Geologic Sediments/*chemistry, Germany, Humans, Mutagens/analysis/chemistry/toxicity, Prealbumin/analysis/chemistry, Rats, Receptors, Toxicity Tests, Water Pollutants},
pubstate = {published},
tppubtype = {article}
}
Vondrácek, Jan; Umannová, Lenka; Machala, Miroslav
Interactions of the aryl hydrocarbon receptor with inflammatory mediators: beyond CYP1A regulation. Journal Article
In: Current drug metabolism, vol. 12, no. 2, pp. 89–103, 2011, ISSN: 1875-5453 1389-2002, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Anti-Inflammatory Agents/pharmacology, Aryl Hydrocarbon Hydroxylases/*genetics/metabolism/*physiology, Aryl Hydrocarbon/drug effects/*physiology, Enzymologic/*physiology, Gene Expression Regulation, Humans, Inflammation Mediators/metabolism/*physiology, Inflammation/drug therapy/metabolism/physiopathology, Receptors, Signal Transduction/*physiology, Xenobiotics/metabolism
@article{vondracek_interactions_2011,
title = {Interactions of the aryl hydrocarbon receptor with inflammatory mediators: beyond CYP1A regulation.},
author = {Jan Vondrácek and Lenka Umannová and Miroslav Machala},
doi = {10.2174/138920011795016827},
issn = {1875-5453 1389-2002},
year = {2011},
date = {2011-02-01},
journal = {Current drug metabolism},
volume = {12},
number = {2},
pages = {89–103},
abstract = {The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which plays a major role in toxic effects of environmental pollutants. It is a pivotal regulator of several xenobiotic-metabolizing enzymes (XMEs), and is now considered to play an important role also in control of cell cycle, apoptosis and cell differentiation. The accumulating evidence suggests that there exists a multiple crosstalk between AhR activation and the signaling pathways activated by inflammatory mediators, such as nuclear factor-κB, a pleiotropic transcription factor controlling the immune/inflammatory responses. In this review, we summarize the current knowledge about the interactions of AhR with inflammatory mediators leading to deregulation of the AhR-dependent XMEs, as well as the evidence pointing to the role of AhR in modulation of inflammatory signals. These include altered expression of proinflammatory cytokines, such as tumor necrosis factor-alpha or interleukin-6, and deregulation of expression/activity of principle enzymes producing inflammatory mediators, such as cyclooxygenase-2. Recent studies also indicate that various classes of AhR ligands may differentially modulate AhR-dependent toxic responses and inflammation, which opens an interesting opportunity for a targeted synthesis of AhR ligands with anti-inflammatory properties. Although the role of activated AhR in the regulation of inflammation is still far from being completely understood, the close interactions between AhR and inflammatory signaling evidently can play a significant role in immune dysfunctions, metabolism of xenobiotics or carcinogenesis. The current review will focus mostly on the interaction of AhR and inflammation relative to mechanisms associated with the pathology of carcinogenesis.},
note = {Place: Netherlands},
keywords = {Animals, Anti-Inflammatory Agents/pharmacology, Aryl Hydrocarbon Hydroxylases/*genetics/metabolism/*physiology, Aryl Hydrocarbon/drug effects/*physiology, Enzymologic/*physiology, Gene Expression Regulation, Humans, Inflammation Mediators/metabolism/*physiology, Inflammation/drug therapy/metabolism/physiopathology, Receptors, Signal Transduction/*physiology, Xenobiotics/metabolism},
pubstate = {published},
tppubtype = {article}
}
Blanárová, Olga Vondálová; Jelínková, Iva; Szöor, Arpád; Skender, Belma; Soucek, Karel; Horváth, Viktor; Vaculová, Alena; Andera, Ladislav; Sova, Petr; Szöllosi, János; Hofmanová, Jirina; Vereb, György; Kozubík, Alois
In: Carcinogenesis, vol. 32, no. 1, pp. 42–51, 2011, ISSN: 1460-2180 0143-3334, (Place: England).
Abstract | Links | BibTeX | Tags: Amantadine/*analogs & derivatives/pharmacology, Apoptosis/*drug effects/physiology, Blotting, Cell Line, Cell Separation, Cisplatin/*pharmacology, Confocal, Flow Cytometry, Fluorescent Antibody Technique, Humans, Microscopy, Neoplasms/*metabolism, Organoplatinum Compounds/*pharmacology, Protein Transport/drug effects, Receptors, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Signal Transduction/*drug effects/physiology, TNF-Related Apoptosis-Inducing Ligand/*metabolism, TNF-Related Apoptosis-Inducing Ligand/metabolism, Tumor, Western
@article{vondalova_blanarova_cisplatin_2011,
title = {Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway.},
author = {Olga Vondálová Blanárová and Iva Jelínková and Arpád Szöor and Belma Skender and Karel Soucek and Viktor Horváth and Alena Vaculová and Ladislav Andera and Petr Sova and János Szöllosi and Jirina Hofmanová and György Vereb and Alois Kozubík},
doi = {10.1093/carcin/bgq220},
issn = {1460-2180 0143-3334},
year = {2011},
date = {2011-01-01},
journal = {Carcinogenesis},
volume = {32},
number = {1},
pages = {42–51},
abstract = {TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) can selectively trigger apoptosis in various cancer cell types. However, many cancer cells are resistant to death receptor-mediated apoptosis. Combination therapy with platinum complexes may affect TRAIL-induced signaling via modulation of various steps in apoptotic pathways. Here, we show that cisplatin or a more potent platinum(IV) complex LA-12 used in 20-fold lower concentration enhanced killing effects of TRAIL in human colon and prostate cancer cell lines via stimulation of caspase activity and overall apoptosis. Both platinum complexes increased DR5 surface expression in colon cancer cells. Small interfering RNA-mediated DR5 silencing rescued cells from sensitizing effects of platinum drugs on TRAIL-induced caspase-8 activation and apoptosis, showing the functional importance of DR5 in the effects observed. In addition, both cisplatin and LA-12 triggered the relocalization of DR4 and DR5 receptors to lipid rafts and accelerated internalization of TRAIL, which may also affect TRAIL signaling. Collectively, modulations of the initial steps of the extrinsic apoptotic pathway at the level of DR5 and plasma membrane are important for sensitization of colon and prostate cancer cells to TRAIL-induced apoptosis mediated by LA-12 and cisplatin.},
note = {Place: England},
keywords = {Amantadine/*analogs & derivatives/pharmacology, Apoptosis/*drug effects/physiology, Blotting, Cell Line, Cell Separation, Cisplatin/*pharmacology, Confocal, Flow Cytometry, Fluorescent Antibody Technique, Humans, Microscopy, Neoplasms/*metabolism, Organoplatinum Compounds/*pharmacology, Protein Transport/drug effects, Receptors, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Signal Transduction/*drug effects/physiology, TNF-Related Apoptosis-Inducing Ligand/*metabolism, TNF-Related Apoptosis-Inducing Ligand/metabolism, Tumor, Western},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jiřina; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Toxicology, vol. 279, no. 1-3, pp. 146–154, 2011, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*drug effects/metabolism, Carcinoma, Cell Cycle/drug effects, Cell Nucleus/metabolism, Cell Proliferation/drug effects, Cells, Chromatin Immunoprecipitation, Cultured, Dose-Response Relationship, Drug, Gene Expression Regulation/*drug effects, Hepatocellular/pathology, Indoles/administration & dosage/metabolism/pharmacology, Liver Neoplasms/pathology, Liver/cytology/drug effects/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Protein Transport, Rats, Receptors, Signal Transduction/drug effects, Stem Cells/drug effects/metabolism
@article{prochazkova_differential_2011,
title = {Differential effects of indirubin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on the aryl hydrocarbon receptor (AhR) signalling in liver progenitor cells.},
author = {Jiřina Procházková and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.tox.2010.10.003},
issn = {1879-3185 0300-483X},
year = {2011},
date = {2011-01-01},
journal = {Toxicology},
volume = {279},
number = {1-3},
pages = {146–154},
abstract = {In the present study, we investigated the effects of potential endogenous ligand indirubin on the aryl hydrocarbon receptor (AhR) signalling, with a focus on the AhR-dependent gene expression and cell cycle progression in rat liver progenitor cells, and compared them with the effects of a model toxic AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The low (picomolar and nanomolar) doses of indirubin, corresponding to expected endogenous levels, induced a transient translocation of AhR to the nucleus, while high (micromolar) doses induced a long-term AhR nuclear translocation, followed by its degradation, similar to the effects of TCDD. Whereas high doses of indirubin recruited AhR/ARNT1 dimer to rat Cyp1a1 promoter, the low doses did not induce its DNA binding, as revealed by the chromatin immunoprecipitation assay. This corresponded with the fact that the micromolar doses of indirubin significantly increased Cyp1a1/1b1 mRNA in a way similar to TCDD, while the low doses of indirubin were only poor inducers of Cyp1a1/1b1 expression. Comparable patterns of expression were observed also for other AhR gene targets, such as Nqo1 and Nrf2. Also, only micromolar doses of indirubin were able to mimic the effects of TCDD on cell cycle and proliferation of liver progenitor cells or hepatoma cells. Nevertheless, indirubin at low concentrations may have unique effects on gene expression in non-tumorigenic cells. Although both TCDD and the high doses of indirubin repressed plakoglobin (Jup) expression, the picomolar doses of indirubin, unlike the equimolar doses of TCDD, increased mRNA levels of this important desmosomal and adherens junctions constituent. These present data suggest that the outcome of AhR activation induced by indirubin at concentrations expected in vivo may differ from the AhR signalling triggered by exogenous toxic ligands, such as TCDD.},
note = {Place: Ireland},
keywords = {Animals, Aryl Hydrocarbon/*drug effects/metabolism, Carcinoma, Cell Cycle/drug effects, Cell Nucleus/metabolism, Cell Proliferation/drug effects, Cells, Chromatin Immunoprecipitation, Cultured, Dose-Response Relationship, Drug, Gene Expression Regulation/*drug effects, Hepatocellular/pathology, Indoles/administration & dosage/metabolism/pharmacology, Liver Neoplasms/pathology, Liver/cytology/drug effects/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Protein Transport, Rats, Receptors, Signal Transduction/drug effects, Stem Cells/drug effects/metabolism},
pubstate = {published},
tppubtype = {article}
}
2009
Vondrácek, Jan; Krcmár, Pavel; Procházková, Jirina; Trilecová, Lenka; Gavelová, Martina; Skálová, Lenka; Szotáková, Barbora; Buncek, Martin; Radilová, Hana; Kozubík, Alois; Machala, Miroslav
In: Chemico-biological interactions, vol. 180, no. 2, pp. 226–237, 2009, ISSN: 1872-7786 0009-2797, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/toxicity, Cell Line, Dimethyl Sulfoxide/toxicity, Enzymologic/drug effects, Gene Expression Regulation, Gene Silencing, Hydrogen Peroxide/toxicity, Liver/*cytology/*enzymology, Polychlorinated Dibenzodioxins/analogs & derivatives/toxicity, Polycyclic Aromatic Hydrocarbons/*metabolism, Rats, Reactive Oxygen Species, Receptors, Stem Cells/*drug effects/*metabolism
@article{vondracek_role_2009,
title = {The role of aryl hydrocarbon receptor in regulation of enzymes involved in metabolic activation of polycyclic aromatic hydrocarbons in a model of rat liver progenitor cells.},
author = {Jan Vondrácek and Pavel Krcmár and Jirina Procházková and Lenka Trilecová and Martina Gavelová and Lenka Skálová and Barbora Szotáková and Martin Buncek and Hana Radilová and Alois Kozubík and Miroslav Machala},
doi = {10.1016/j.cbi.2009.03.011},
issn = {1872-7786 0009-2797},
year = {2009},
date = {2009-07-01},
journal = {Chemico-biological interactions},
volume = {180},
number = {2},
pages = {226–237},
abstract = {In contrast to hepatocytes, there is only limited information about the expression and activities of enzymes participating in metabolic activation of environmental mutagens, including polycyclic aromatic hydrocarbons (PAHs), in liver progenitor cells. In rat liver "stem-like" WB-F344 cell line, sharing many characteristics with rat liver progenitor cells, PAHs are efficiently activated to their ultimate genotoxic metabolites forming DNA adducts. The present study aimed to characterize expression/activities of enzymes of two major pathways involved in the metabolism of benzo[a]pyrene (BaP): cytochrome P450 (CYP) family 1 enzymes and cytosolic aldo-keto reductases (AKRs). We report here that, apart from induction of CYP1A1 and CYP1B1 expression and the corresponding enzymatic activity, both BaP and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced rat 3alpha-hydroxysteroid dehydrogenase (AKR1C9) expression and activity. In contrast, the aldehyde reductase AKR1A1 was not induced by either treatment. Thus, both CYP1 and AKR metabolic pathways were inducible in the model of liver progenitor cells. BaP and TCDD were efficient inducers of NAD(P)H:quinone oxidoreductase 1 (NQO1) expression and activity in WB-F344 cells, a principal enzyme of cellular antioxidant defense. Both compounds also induced expression of transcription factor NRF2, involved in control of enzymes protecting cells from oxidative stress. However, although BaP induced a significant formation of reactive oxygen species, it did not induce expression of heme oxygenase-1, suggesting that induction of oxidative stress by BaP was limited. Using shRNA against the aryl hydrocarbon receptor (AhR), we found that similar to CYP1A1 and CYP1B1, the AKR1C9 induction was AhR-dependent. Moreover, constitutive AKR1C9 levels in AhR-deficient rat BP8 hepatoma cells were significantly lower than in their AhR-positive 5L variant, thus supporting possible role of AhR in regulation of AKR1C9 expression. Taken together, both CYP1 and AKR1C9 appear to be AhR-regulated metabolic pathways, which may contribute to formation of pro-carcinogenic PAH metabolites in liver progenitor cells.},
note = {Place: Ireland},
keywords = {Animals, Aryl Hydrocarbon/*metabolism, Benzo(a)pyrene/toxicity, Cell Line, Dimethyl Sulfoxide/toxicity, Enzymologic/drug effects, Gene Expression Regulation, Gene Silencing, Hydrogen Peroxide/toxicity, Liver/*cytology/*enzymology, Polychlorinated Dibenzodioxins/analogs & derivatives/toxicity, Polycyclic Aromatic Hydrocarbons/*metabolism, Rats, Reactive Oxygen Species, Receptors, Stem Cells/*drug effects/*metabolism},
pubstate = {published},
tppubtype = {article}
}
Takacova, Martina; Holotnakova, Tereza; Vondracek, Jan; Machala, Miroslav; Pencikova, Katerina; Gradin, Katarina; Poellinger, Lorenz; Pastorek, Jaromir; Pastorekova, Silvia; Kopacek, Juraj
Role of aryl hydrocarbon receptor in modulation of the expression of the hypoxia marker carbonic anhydrase IX. Journal Article
In: The Biochemical journal, vol. 419, no. 2, pp. 419–425, 2009, ISSN: 1470-8728 0264-6021, (Place: England).
Abstract | Links | BibTeX | Tags: alpha Subunit, Animals, Antigens, Aryl Hydrocarbon/genetics/metabolism/*physiology, Binding Sites, Blotting, Carbonic Anhydrase IX, Carbonic Anhydrases/genetics/*metabolism, Cell Hypoxia/genetics/*physiology, Cell Line, Chromatin Immunoprecipitation, Genetic/genetics, Humans, Hypoxia-Inducible Factor 1, Mice, Neoplasm/genetics, Polychlorinated Dibenzodioxins/pharmacology, Polymerase Chain Reaction, Promoter Regions, Protein Binding/drug effects, Receptors, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction/drug effects, Tumor, Western
@article{takacova_role_2009,
title = {Role of aryl hydrocarbon receptor in modulation of the expression of the hypoxia marker carbonic anhydrase IX.},
author = {Martina Takacova and Tereza Holotnakova and Jan Vondracek and Miroslav Machala and Katerina Pencikova and Katarina Gradin and Lorenz Poellinger and Jaromir Pastorek and Silvia Pastorekova and Juraj Kopacek},
doi = {10.1042/BJ20080952},
issn = {1470-8728 0264-6021},
year = {2009},
date = {2009-04-01},
journal = {The Biochemical journal},
volume = {419},
number = {2},
pages = {419–425},
abstract = {Tumour-associated expression of CA IX (carbonic anhydrase IX) is to a major extent regulated by HIF-1 (hypoxia-inducible factor-1) which is important for transcriptional activation and consists of the oxygen-regulated subunit HIF-1alpha and the partner factor ARNT [AhR (aryl hydrocarbon receptor) nuclear translocator]. We have previously observed that HIF-1alpha competes with the AhR for interaction with ARNT under conditions when both conditionally regulated factors are activated. We have therefore investigated whether TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)-induced activation of the AhR pathway might interfere with CA IX expression. The results from the present study suggest that TCDD treatment reduces hypoxic induction of both CA IX mRNA and protein expression. Moreover, the transcriptional activity of the CA9 promoter was significantly reduced by expression of CAAhR (constitutively active AhR), which activates transcription in a ligand-independent manner. Finally, we found that ARNT is critical for both hypoxic induction and the TCDD-mediated inhibition of CA9 expression.},
note = {Place: England},
keywords = {alpha Subunit, Animals, Antigens, Aryl Hydrocarbon/genetics/metabolism/*physiology, Binding Sites, Blotting, Carbonic Anhydrase IX, Carbonic Anhydrases/genetics/*metabolism, Cell Hypoxia/genetics/*physiology, Cell Line, Chromatin Immunoprecipitation, Genetic/genetics, Humans, Hypoxia-Inducible Factor 1, Mice, Neoplasm/genetics, Polychlorinated Dibenzodioxins/pharmacology, Polymerase Chain Reaction, Promoter Regions, Protein Binding/drug effects, Receptors, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction/drug effects, Tumor, Western},
pubstate = {published},
tppubtype = {article}
}
2007
Vondrácek, Jan; Svihálková-Sindlerová, Lenka; Pencíková, Katerina; Marvanová, Sona; Krcmár, Pavel; Ciganek, Miroslav; Neca, Jirí; Trosko, James E.; Upham, Brad; Kozubík, Alois; Machala, Miroslav
In: Environmental toxicology and chemistry, vol. 26, no. 11, pp. 2308–2316, 2007, ISSN: 0730-7268, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Anthracenes/toxicity, Aryl Hydrocarbon/metabolism, Carcinogens/*toxicity, Cell Line, Cell Proliferation/*drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Czech Republic, Dose-Response Relationship, Drug, Environmental Pollutants/*toxicity, Gap Junctions/*drug effects/metabolism, Gene Expression Regulation/*drug effects/physiology, Geologic Sediments/*chemistry, Liver/cytology/pathology, Methylation, Naphthalenes/toxicity, Phenanthrenes/toxicity, Rats, Receptors, Rivers/*chemistry, Tumor, Tumor Suppressor Protein p53/metabolism
@article{vondracek_concentrations_2007,
title = {Concentrations of methylated naphthalenes, anthracenes, and phenanthrenes occurring in Czech river sediments and their effects on toxic events associated with carcinogenesis in rat liver cell lines.},
author = {Jan Vondrácek and Lenka Svihálková-Sindlerová and Katerina Pencíková and Sona Marvanová and Pavel Krcmár and Miroslav Ciganek and Jirí Neca and James E. Trosko and Brad Upham and Alois Kozubík and Miroslav Machala},
doi = {10.1897/07-161R.1},
issn = {0730-7268},
year = {2007},
date = {2007-11-01},
journal = {Environmental toxicology and chemistry},
volume = {26},
number = {11},
pages = {2308–2316},
abstract = {Alkylated polycyclic aromatic hydrocarbons (PAHs) are important environmental pollutants. In the present study, we determined levels of monomethylated naphthalenes (MeNap), phenanthrenes (MePhe), and anthracenes (MeAnt) in Czech river sediments. The levels of MePhe generally were lower than the concentrations of phenanthrene. In contrast, both MeNap and MeAnt were found at levels higher than their respective parent compounds in the majority of sampling sites. We then investigated their aryl hydrocarbon receptor (AhR)-mediated activity, accumulation of phosphorylated p53 protein, induction of expression of cytochrome P450 1A1 (CYP1A1), inhibition of gap junctional intercellular communication (GJIC), and effects on cell proliferation in rat liver cell models to evaluate the relative importance of these toxicity mechanisms of low-molecular-weight methylated PAHs. Methylated phenanthrene and anthracene compounds were weak inducers of AhR-mediated activity as determined both in a reporter gene assay system and by detection of the endogenous gene (Cyp1a1) induction. 2-Methylphenanthrene was the most potent AhR ligand. Contribution of MeAnt and MePhe to overall AhR-inducing potencies should be taken into account in PAH-contaminated environments. Nevertheless, their effects on AhR were not sufficient to modulate cell proliferation in a normal rat liver progenitor cell model system. These PAHs only had a marginal effect on p53 phosphorylation at high doses of 1-, 3-, and 9-MePhe as well as 1 MeAnt. On the other hand, both 2- and 9-MeAnt as well as all the MePhe under study were efficient inhibitors of GJIC, suggesting that these compounds might act as tumor promoters. In summary, inhibition of GJIC and partial activation of AhR seem to be the most prominent toxic effects of the methylated PAHs in the present study.},
note = {Place: United States},
keywords = {Animals, Anthracenes/toxicity, Aryl Hydrocarbon/metabolism, Carcinogens/*toxicity, Cell Line, Cell Proliferation/*drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Czech Republic, Dose-Response Relationship, Drug, Environmental Pollutants/*toxicity, Gap Junctions/*drug effects/metabolism, Gene Expression Regulation/*drug effects/physiology, Geologic Sediments/*chemistry, Liver/cytology/pathology, Methylation, Naphthalenes/toxicity, Phenanthrenes/toxicity, Rats, Receptors, Rivers/*chemistry, Tumor, Tumor Suppressor Protein p53/metabolism},
pubstate = {published},
tppubtype = {article}
}
Umannová, Lenka; Zatloukalová, Jirina; Machala, Miroslav; Krcmár, Pavel; Májková, Zuzana; Hennig, Bernhard; Kozubík, Alois; Vondrácek, Jan
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 99, no. 1, pp. 79–89, 2007, ISSN: 1096-6080 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon Hydroxylases/genetics/*metabolism, Aryl Hydrocarbon/*drug effects/metabolism, Carcinogens/metabolism/toxicity, Cell Proliferation/drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, Dose-Response Relationship, Drug, Drug Combinations, Drug Interactions, Enzymologic/*drug effects, Epithelial Cells/drug effects/enzymology, Gene Expression Regulation, Inbred F344, Ligands, Liver/cytology, Polychlorinated Biphenyls/metabolism/*toxicity, Polychlorinated Dibenzodioxins/metabolism/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology, Tumor Necrosis Factor-alpha/*pharmacology
@article{umannova_tumor_2007,
title = {Tumor necrosis factor-alpha modulates effects of aryl hydrocarbon receptor ligands on cell proliferation and expression of cytochrome P450 enzymes in rat liver "stem-like" cells.},
author = {Lenka Umannová and Jirina Zatloukalová and Miroslav Machala and Pavel Krcmár and Zuzana Májková and Bernhard Hennig and Alois Kozubík and Jan Vondrácek},
doi = {10.1093/toxsci/kfm149},
issn = {1096-6080 1096-0929},
year = {2007},
date = {2007-09-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {99},
number = {1},
pages = {79–89},
abstract = {Various liver diseases lead to an extensive inflammatory response and release of a number of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). This cytokine is known to play a major role in liver regeneration as well as in carcinogenesis. We investigated possible interactions of TNF-alpha with ligands of the aryl hydrocarbon receptor (AhR) and known liver carcinogens, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and coplanar 3,3',4,4',5-pentachlorobiphenyl (PCB 126). These compounds have been previously found to disrupt cell cycle control in contact-inhibited rat liver WB-F344 cells, an in vitro model of adult liver progenitor cells. TNF-alpha itself had no significant effect on the proliferation/apoptosis ratio in the WB-F344 cell line. However, it significantly potentiated proliferative effects of low picomolar range doses of both TCDD and PCB 126, leading to an increase in cell numbers, as well as an increased percentage of cells entering the S-phase of the cell cycle. The combination of TNF-alpha with low concentrations of AhR ligands increased both messenger RNA (mRNA) and protein levels of cyclin A, a principle cyclin involved in disruption of contact inhibition. TNF-alpha temporarily inhibited AhR-dependent induction of cytochrome P450 1A1 (CYP1A1). In contrast, TNF-alpha significantly enhanced induction of CYP1B1 at both mRNA and protein levels, by a mechanism, which was independent of nuclear factor-kappaB activation. These results suggest that TNF-alpha can significantly amplify effects of AhR ligands on deregulation of cell proliferation control, as well as on expression of CYP1B1, which is involved in metabolic activation of a number of mutagenic compounds.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon Hydroxylases/genetics/*metabolism, Aryl Hydrocarbon/*drug effects/metabolism, Carcinogens/metabolism/toxicity, Cell Proliferation/drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, Dose-Response Relationship, Drug, Drug Combinations, Drug Interactions, Enzymologic/*drug effects, Epithelial Cells/drug effects/enzymology, Gene Expression Regulation, Inbred F344, Ligands, Liver/cytology, Polychlorinated Biphenyls/metabolism/*toxicity, Polychlorinated Dibenzodioxins/metabolism/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology, Tumor Necrosis Factor-alpha/*pharmacology},
pubstate = {published},
tppubtype = {article}
}
Zatloukalová, Jirina; Svihálková-Sindlerová, Lenka; Kozubík, Alois; Krcmár, Pavel; Machala, Miroslav; Vondrácek, Jan
In: Biochemical pharmacology, vol. 73, no. 10, pp. 1622–1634, 2007, ISSN: 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/genetics/*metabolism, beta-Naphthoflavone/*pharmacology, Cadherins/genetics/metabolism, Cell Proliferation/*drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/genetics/metabolism, Flavonoids/*pharmacology, Gene Expression/*drug effects/physiology, Hepatocytes/*drug effects/physiology, Inbred F344, Liver/cytology, NAD(P)H Dehydrogenase (Quinone)/genetics/metabolism, Rats, Receptors
@article{zatloukalova_beta-naphthoflavone_2007,
title = {beta-Naphthoflavone and 3'-methoxy-4'-nitroflavone exert ambiguous effects on Ah receptor-dependent cell proliferation and gene expression in rat liver 'stem-like' cells.},
author = {Jirina Zatloukalová and Lenka Svihálková-Sindlerová and Alois Kozubík and Pavel Krcmár and Miroslav Machala and Jan Vondrácek},
doi = {10.1016/j.bcp.2007.01.032},
issn = {0006-2952},
year = {2007},
date = {2007-05-01},
journal = {Biochemical pharmacology},
volume = {73},
number = {10},
pages = {1622–1634},
abstract = {Both natural and synthetic flavonoids are known to interact with the aryl hydrocarbon receptor (AhR); however, their agonist/antagonist properties in vitro have been so far studied mostly in the context of cytochrome P450 1A1 gene (Cyp1a1) regulation. We investigated effects of two synthetic flavones known either as AhR agonist (beta-naphthoflavone; BNF) or antagonist (3'-methoxy-4'-nitroflavone; 3M4NF), using an in vitro model of liver 'stem-like' cells, on expression of various AhR target genes and AhR-dependent cell proliferation. We found that the presumed antagonist 3M4NF induces a partial nuclear translocation and activation of AhR. Although inhibiting the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced Cyp1a1 expression, 3M4NF alone induced a minor increase of CYP1A1 mRNA and protein. However, 3M4NF did not induce AhR binding to synthetic dioxin response elements (DRE). In contrast to Cyp1a1, 3M4NF induced a marked expression of other AhR-regulated genes, such as Cyp1b1 and Nqo1, as well as transcriptional repression of Cdh13 gene, confirming that its effects may be promoter-context specific. Like BNF, 3M4NF induced AhR-dependent cell proliferation of contact-inhibited rat liver 'stem-like' WB-F344 cells, associated with a marked upregulation of Cyclin A, as well as the downregulation of proteins involved in formation of cell-cell contacts. Based on these experimental findings, we conclude that partial agonists/antagonists of AhR can increase cell proliferation rate and AhR-dependent genes expression in both cell type- and gene-specific manner. The specificity of effects of flavones on diverse AhR targets should be taken into account, when studying AhR signaling using presumed AhR antagonists.},
note = {Place: England},
keywords = {Animals, Aryl Hydrocarbon/genetics/*metabolism, beta-Naphthoflavone/*pharmacology, Cadherins/genetics/metabolism, Cell Proliferation/*drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/genetics/metabolism, Flavonoids/*pharmacology, Gene Expression/*drug effects/physiology, Hepatocytes/*drug effects/physiology, Inbred F344, Liver/cytology, NAD(P)H Dehydrogenase (Quinone)/genetics/metabolism, Rats, Receptors},
pubstate = {published},
tppubtype = {article}
}
Andrysík, Zdenek; Vondrácek, Jan; Machala, Miroslav; Krcmár, Pavel; Svihálková-Sindlerová, Lenka; Kranz, Anne; Weiss, Carsten; Faust, Dagmar; Kozubík, Alois; Dietrich, Cornelia
In: Mutation research, vol. 615, no. 1-2, pp. 87–97, 2007, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/antagonists & inhibitors/genetics/*metabolism, Base Sequence, Benz(a)Anthracenes/toxicity, Benzo(a)pyrene/toxicity, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/*physiology, Cell Line, Cell Proliferation/drug effects, Cyclin A/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cytochrome P-450 CYP1A1/genetics, Epithelial Cells/cytology/drug effects/metabolism, Fluorenes/toxicity, Gene Expression/drug effects, Hepatocytes/cytology/*drug effects/*metabolism, Messenger/genetics/metabolism, Multiprotein Complexes, Mutagens/toxicity, Mutation, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, RNA, Small Interfering/genetics
@article{andrysik_aryl_2007,
title = {The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells.},
author = {Zdenek Andrysík and Jan Vondrácek and Miroslav Machala and Pavel Krcmár and Lenka Svihálková-Sindlerová and Anne Kranz and Carsten Weiss and Dagmar Faust and Alois Kozubík and Cornelia Dietrich},
doi = {10.1016/j.mrfmmm.2006.10.004},
issn = {0027-5107},
year = {2007},
date = {2007-02-01},
journal = {Mutation research},
volume = {615},
number = {1-2},
pages = {87–97},
abstract = {Disruption of cell proliferation control by polycyclic aromatic hydrocarbons (PAHs) may contribute to their carcinogenicity. We investigated role of the aryl hydrocarbon receptor (AhR) in disruption of contact inhibition in rat liver epithelial WB-F344 'stem-like' cells, induced by the weakly mutagenic benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF) and by the strongly mutagenic benzo[a]pyrene (BaP). There were significant differences between the effects of BaA and BbF, and those of the strongly genotoxic BaP. Both BaA and BbF increased percentage of cells entering S-phase and cell numbers, associated with an increased expression of Cyclin A and Cyclin A/cdk2 complex activity. Their effects were significantly reduced in cells expressing a dominant-negative AhR mutant (dnAhR). Roscovitine, a chemical inhibitor of cdk2, abolished the induction of cell proliferation by BbF. However, neither BaA nor BbF modulated expression of the principal cdk inhibitor involved in maintenance of contact inhibition, p27(Kip1), or pRb phosphorylation. The strongly mutagenic BaP induced apoptosis, a decrease in total cell numbers and significantly higher percentage of cells entering S-phase than either BaA or BbF. Given that BaP induced high levels of Cyclin A/cdk2 activity, downregulation of p27(Kip1) and hyperphosphorylation of pRb, the accumulation of cells in S-phase was probably due to cell proliferation, although S-phase arrest due to blocked replication forks can not be excluded. Both types of effects of BaP were significantly attenuated in dnAhR cells. Transfection of WB-F344 cells with siRNA targeted against AhR decreased induction of Cyclin A induced by BbF or BaP, further supporting the role of AhR in proliferative effects of PAHs. This suggest that activation of AhR plays a significant role both in disruption of contact inhibition by weakly mutagenic PAHs and in genotoxic effects of BaP possibly leading to enhanced cell proliferation. Thus, PAHs may increase proliferative rate and the likelihood of fixation of mutations.},
note = {Place: Netherlands},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/antagonists & inhibitors/genetics/*metabolism, Base Sequence, Benz(a)Anthracenes/toxicity, Benzo(a)pyrene/toxicity, Cell Cycle Proteins/metabolism, Cell Cycle/*drug effects/*physiology, Cell Line, Cell Proliferation/drug effects, Cyclin A/metabolism, Cyclin-Dependent Kinase 2/metabolism, Cytochrome P-450 CYP1A1/genetics, Epithelial Cells/cytology/drug effects/metabolism, Fluorenes/toxicity, Gene Expression/drug effects, Hepatocytes/cytology/*drug effects/*metabolism, Messenger/genetics/metabolism, Multiprotein Complexes, Mutagens/toxicity, Mutation, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, RNA, Small Interfering/genetics},
pubstate = {published},
tppubtype = {article}
}
2006
Soucek, Karel; Kamaid, Andrés; Phung, Anh D.; Kubala, Lukás; Bulinski, J. Chloë; Harper, Richart W.; Eiserich, Jason P.
Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications. Journal Article
In: The Prostate, vol. 66, no. 9, pp. 954–965, 2006, ISSN: 0270-4137, (Place: United States).
Abstract | Links | BibTeX | Tags: *Protein Processing, Acetylation, Androgen/analysis, Androgens/physiology, Blotting, Cell Line, Disease Progression, Electrophoresis, Epithelium/chemistry/metabolism/pathology, Fluorescence, Humans, Male, Microscopy, Peptide Synthases/analysis/metabolism, Polyacrylamide Gel, Polyglutamic Acid/analysis, Post-Translational, Prostate/*chemistry/cytology/metabolism, Prostatic Neoplasms/*chemistry/metabolism/pathology, Receptors, Tubulin/*analysis/*metabolism, Tumor, Tyrosine/analysis, Western
@article{soucek_normal_2006,
title = {Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications.},
author = {Karel Soucek and Andrés Kamaid and Anh D. Phung and Lukás Kubala and J. Chloë Bulinski and Richart W. Harper and Jason P. Eiserich},
doi = {10.1002/pros.20416},
issn = {0270-4137},
year = {2006},
date = {2006-06-01},
journal = {The Prostate},
volume = {66},
number = {9},
pages = {954–965},
abstract = {BACKGROUND: Multiple diverse posttranslational modifications of alpha-tubulin such as detyrosination, further cleavage of the penultimate glutamate residue (Delta2-tubulin), acetylation, and polyglutamylation increase the structural and functional diversity of microtubules. METHODS: Herein, we characterized the molecular profile of alpha-tubulin posttranslational modifications in normal human prostate epithelial cells (PrEC), immortalized normal prostate epithelial cells (PZ-HPV-7), androgen-dependent prostate cancer cells (LNCaP), transitional androgen-independent prostate cancer cells (LNCaP-cds and CWR22Rv1), and androgen-independent prostate cancer cells (PC3). RESULTS: Compared to PrEC and PZ-HPV-7 cells, all cancer cells exhibited elevated levels of detyrosinated and polyglutamylated alpha-tubulin, that was paralleled by decreased protein levels of tubulin tyrosine ligase (TTL). In contrast, PrEC and PZ-HPV-7 cells expressed markedly higher levels of Delta2-tubulin. Whereas alpha-tubulin acetylation levels were generally equivalent in all the cell lines, PC3 cells did not display detectable levels of Ac-tubulin. CONCLUSION: These data may reveal novel biomarkers of prostate cancer and new therapeutic targets.},
note = {Place: United States},
keywords = {*Protein Processing, Acetylation, Androgen/analysis, Androgens/physiology, Blotting, Cell Line, Disease Progression, Electrophoresis, Epithelium/chemistry/metabolism/pathology, Fluorescence, Humans, Male, Microscopy, Peptide Synthases/analysis/metabolism, Polyacrylamide Gel, Polyglutamic Acid/analysis, Post-Translational, Prostate/*chemistry/cytology/metabolism, Prostatic Neoplasms/*chemistry/metabolism/pathology, Receptors, Tubulin/*analysis/*metabolism, Tumor, Tyrosine/analysis, Western},
pubstate = {published},
tppubtype = {article}
}
2005
Plísková, Martina; Vondrácek, Jan; Kren, Vladimír; Gazák, Radek; Sedmera, Petr; Walterová, Daniela; Psotová, Jitka; Simánek, Vilím; Machala, Miroslav
Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Journal Article
In: Toxicology, vol. 215, no. 1-2, pp. 80–89, 2005, ISSN: 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Drug, Estrogen/*metabolism, Humans, Luciferases/biosynthesis/genetics, Molecular Structure, Rats, Receptors, Silybin, Silymarin/chemistry/pharmacology, Stereoisomerism, Tumor
@article{pliskova_effects_2005,
title = {Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation.},
author = {Martina Plísková and Jan Vondrácek and Vladimír Kren and Radek Gazák and Petr Sedmera and Daniela Walterová and Jitka Psotová and Vilím Simánek and Miroslav Machala},
doi = {10.1016/j.tox.2005.06.020},
issn = {0300-483X},
year = {2005},
date = {2005-11-01},
journal = {Toxicology},
volume = {215},
number = {1-2},
pages = {80–89},
abstract = {Silymarin, a standardized mixture of flavonolignans, or its major constituents could be effective for prevention and treatment of hepatic damage or skin cancer. However, their potential side effects, such as modulation of endocrine functions via the disruption of estrogen receptor (ER) and/or aryl hydrocarbon receptor (AhR) activation, are largely unknown. In the present study, we investigated impact of silymarin, its constituents and a series of their synthetic derivatives on ER- and AhR-mediated activities using in vitro reporter gene assays. We found that none of the compounds under study affected the AhR-mediated activity in rat hepatoma cells. Contrary to that, several compounds behaved as either partial or full ER agonists. Silymarin elicited partial ER activation, with silybin B being probably responsible for a majority of the weak ER-mediated activity of silymarin; silybin A and other flavonolignans were found to be inactive and potent ER agonist taxifolin is only a minor constituent of silymarin. To our knowledge, this is probably the first time, when receptor-specific in vitro effects of separated diastereomers have been demonstrated. In contrast to silymarin constituents, the synthetic silybin derivatives, potentially useful as chemoprotective agents, did not modulate the ER-mediated activity, with exception of 23-O-pivaloylsilybin. Interestingly, 7-O-benzylsilybin potentiated ER-mediated activity of 17beta-estradiol despite possessing no estrogenic activity. In conclusion, our data suggest that estrogenicity of some silymarin constituents should be taken in account as their potential side effect when considered as chemopreventive compounds. These results also stress the need to study biological activities of purified or synthesized diastereomers of silybin derivatives.},
note = {Place: Ireland},
keywords = {Animals, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Drug, Estrogen/*metabolism, Humans, Luciferases/biosynthesis/genetics, Molecular Structure, Rats, Receptors, Silybin, Silymarin/chemistry/pharmacology, Stereoisomerism, Tumor},
pubstate = {published},
tppubtype = {article}
}
Plísková, Martina; Vondrácek, Jan; Canton, Rocio Fernandez; Nera, Jirí; Kocan, Anton; Petrík, Ján; Trnovec, Tomás; Sanderson, Thomas; Berg, Martin; Machala, Miroslav
Impact of polychlorinated biphenyls contamination on estrogenic activity in human male serum. Journal Article
In: Environmental health perspectives, vol. 113, no. 10, pp. 1277–1284, 2005, ISSN: 0091-6765 1552-9924, (Place: United States).
Abstract | Links | BibTeX | Tags: Aryl Hydrocarbon/agonists, Environmental Pollutants/analysis/*toxicity, Estradiol/*blood, Gas Chromatography-Mass Spectrometry, Humans, Male, Polychlorinated Biphenyls/analysis/*toxicity, Receptors, Slovakia
@article{pliskova_impact_2005,
title = {Impact of polychlorinated biphenyls contamination on estrogenic activity in human male serum.},
author = {Martina Plísková and Jan Vondrácek and Rocio Fernandez Canton and Jirí Nera and Anton Kocan and Ján Petrík and Tomás Trnovec and Thomas Sanderson and Martin Berg and Miroslav Machala},
doi = {10.1289/ehp.7745},
issn = {0091-6765 1552-9924},
year = {2005},
date = {2005-10-01},
journal = {Environmental health perspectives},
volume = {113},
number = {10},
pages = {1277–1284},
abstract = {Polychlorinated biphenyls (PCBs) are thought to cause numerous adverse health effects, but their impact on estrogen signaling is still not fully understood. In the present study, we used the ER-CALUX bioassay to determine estrogenic/antiestrogenic activities of the prevalent PCB congeners and PCB mixtures isolated from human male serum. The samples were collected from residents of an area with an extensive environmental contamination from a former PCB production site as well as from a neighboring background region in eastern Slovakia. We found that the lower-chlorinated PCBs were estrogenic, whereas the prevalent higher-chlorinated PCB congeners 138, 153, 170, 180, 187, 194, 199, and 203, as well as major PCB metabolites, behaved as antiestrogens. Coplanar PCBs had no direct effect on estrogen receptor (ER) activation in this in vitro model. In human male serum samples, high levels of PCBs were associated with a decreased ER-mediated activity and an increased dioxin-like activity, as determined by the DR-CALUX assay. 17beta-Estradiol (E2) was responsible for a major part of estrogenic activity identified in total serum extracts. Significant negative correlations were found between dioxin-like activity, as well as mRNA levels of cytochromes P450 1A1 and 1B1 in lymphocytes, and total estrogenic activity. For sample fractions containing only persistent organic pollutants (POPs), the increased frequency of antiestrogenic samples was associated with a higher sum of PCBs. This suggests that the prevalent non-dioxin-like PCBs were responsible for the weak antiestrogenic activity of some POPs fractions. Our data also suggest that it might be important to pay attention to direct effects of PCBs on steroid hormone levels in heavily exposed subjects.},
note = {Place: United States},
keywords = {Aryl Hydrocarbon/agonists, Environmental Pollutants/analysis/*toxicity, Estradiol/*blood, Gas Chromatography-Mass Spectrometry, Humans, Male, Polychlorinated Biphenyls/analysis/*toxicity, Receptors, Slovakia},
pubstate = {published},
tppubtype = {article}
}
Plísková, Martina; Vondrácek, Jan; Vojtesek, Borivoj; Kozubík, Alois; Machala, Miroslav
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 83, no. 2, pp. 246–256, 2005, ISSN: 1096-6080 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Benz(a)Anthracenes/*toxicity, Benzo(a)pyrene/*toxicity, Benzothiazoles, Breast Neoplasms/drug therapy/*genetics/metabolism, Bromodeoxyuridine/metabolism, Carcinogens/*toxicity, Carcinoma/drug therapy/*genetics/metabolism, Cell Cycle/drug effects, Cell Line, Cell Proliferation/*drug effects, Cell Survival/drug effects, DNA Replication/drug effects, Dose-Response Relationship, Drug, Drug Interactions, Epigenesis, Estradiol/*analogs & derivatives/pharmacology, Estrogen, Estrogen Antagonists/pharmacology, Female, Fulvestrant, Genetic, Humans, Receptors, Thiazoles/pharmacology, Toluene/*analogs & derivatives/pharmacology, Tumor, Tumor Suppressor Protein p53/antagonists & inhibitors/genetics/metabolism
@article{pliskova_deregulation_2005,
title = {Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events.},
author = {Martina Plísková and Jan Vondrácek and Borivoj Vojtesek and Alois Kozubík and Miroslav Machala},
doi = {10.1093/toxsci/kfi040},
issn = {1096-6080 1096-0929},
year = {2005},
date = {2005-02-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {83},
number = {2},
pages = {246–256},
abstract = {Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), are carcinogens suggested to be involved in development of human cancer. Several recent studies have reported that PAHs can activate estrogen receptors (ER), either directly or indirectly by producing estrogenic metabolites. We hypothesized that the activation of ER by PAHs or their metabolites could induce cell proliferation in estrogen-sensitive cells. In the present study, we found that two PAHs, benz[a]anthracene (BaA) and BaP, can stimulate proliferation of human breast carcinoma MCF-7 cells at concentrations 100 nM and higher. This effect was ER-dependent, because it was blocked by the pure antiestrogen ICI 182,780. Although both PAHs partially inhibited S-phase entry and DNA synthesis induced by 17beta-estradiol, they stimulated S-phase entry when applied to MCF-7 cells synchronized by serum deprivation. This was in contrast with model antiestrogenic aryl hydrocarbon receptor ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, which fully suppressed S-phase entry. BaP, which is a strong mutagen, was found to induce p53 tumor suppressor expression, a partial S-phase arrest and at higher concentrations also cell death. Pifithrin-alpha, a synthetic inhibitor of p53 activity, abolished both S-phase arrest and apoptosis induced by genotoxic PAHs, and it potentiated the proliferative effect of BaP. Thus, both genotoxic and nongenotoxic events seem to interact in the effects of BaP on cell proliferation. Taken together, our data indicate that both BaA and BaP can stimulate cell proliferation through activation of ER. The proliferative effects of these carcinogenic compounds might contribute to tumor promotion in estrogen-sensitive tissues.},
note = {Place: United States},
keywords = {Benz(a)Anthracenes/*toxicity, Benzo(a)pyrene/*toxicity, Benzothiazoles, Breast Neoplasms/drug therapy/*genetics/metabolism, Bromodeoxyuridine/metabolism, Carcinogens/*toxicity, Carcinoma/drug therapy/*genetics/metabolism, Cell Cycle/drug effects, Cell Line, Cell Proliferation/*drug effects, Cell Survival/drug effects, DNA Replication/drug effects, Dose-Response Relationship, Drug, Drug Interactions, Epigenesis, Estradiol/*analogs & derivatives/pharmacology, Estrogen, Estrogen Antagonists/pharmacology, Female, Fulvestrant, Genetic, Humans, Receptors, Thiazoles/pharmacology, Toluene/*analogs & derivatives/pharmacology, Tumor, Tumor Suppressor Protein p53/antagonists & inhibitors/genetics/metabolism},
pubstate = {published},
tppubtype = {article}
}
Vondrácek, Jan; Machala, Miroslav; Bryja, Vítezslav; Chramostová, Katerina; Krcmár, Pavel; Dietrich, Cornelia; Hampl, Ales; Kozubík, Alois
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 83, no. 1, pp. 53–63, 2005, ISSN: 1096-6080 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/*drug effects, Cyclin A/biosynthesis, Cyclin D2, Cyclin-Dependent Kinases/biosynthesis, Cyclins/biosynthesis, Dose-Response Relationship, Drug, Epithelial Cells/*drug effects/enzymology/metabolism, Hydroxylation, Liver/*cytology, Polychlorinated Biphenyls/metabolism/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology/metabolism, Up-Regulation
@article{vondracek_aryl_2005,
title = {Aryl hydrocarbon receptor-activating polychlorinated biphenyls and their hydroxylated metabolites induce cell proliferation in contact-inhibited rat liver epithelial cells.},
author = {Jan Vondrácek and Miroslav Machala and Vítezslav Bryja and Katerina Chramostová and Pavel Krcmár and Cornelia Dietrich and Ales Hampl and Alois Kozubík},
doi = {10.1093/toxsci/kfi009},
issn = {1096-6080 1096-0929},
year = {2005},
date = {2005-01-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {83},
number = {1},
pages = {53–63},
abstract = {Polychlorinated biphenyls (PCBs) exhibit tumor-promoting effects in experimental animals. We investigated effects of six model PCB congeners and hydroxylated PCB metabolites on proliferation of contact-inhibited rat liver epithelial WB-F344 cells. The 'dioxin-like' PCB congeners, PCB 126, PCB 105, and 4'-OH-PCB 79, a metabolite of the planar PCB 77 congener, induced cell proliferation in a concentration-dependent manner. In contrast, the 'non-dioxin-like' compounds that are not aryl hydrocarbon receptor (AhR) agonists, PCB 47, PCB 153, and 4-OH-PCB 187, an abundant noncoplanar PCB metabolite, had no effect on cell proliferation at concentrations up to 10 muM. The concentrations of dioxin-like PCBs leading to cell proliferation corresponded with the levels inducing the expression of cytochrome P450 1A1 mRNA, suggesting that the release from contact inhibition was associated with AhR activation. The effects of PCB 126 and PCB 153 on expression of proteins controlling G0/G1-S-phase transition and S-phase progression were compared. Only PCB 126 was found to upregulate cyclin A and D2 protein levels, and to increase both total cyclin-dependent kinase 2 (cdk2) and cyclin A/cdk2 complex activities. Despite the observed upregulation of cyclin D2, no increase in cdk4 activity was observed. The expression of cdk inhibitor p27Kip1 was not affected by either PCB 126 or PCB 153. These results suggest that dioxin-like PCBs can induce cell proliferation of contact-inhibited rat liver epithelial cells by increasing cyclin A protein levels, a process that then leads to upregulation of cyclin A/cdk2 activity and initiation of DNA replication. This mechanism could be involved in tumor-promoting effects of dioxin-like PCBs.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/*drug effects, Cyclin A/biosynthesis, Cyclin D2, Cyclin-Dependent Kinases/biosynthesis, Cyclins/biosynthesis, Dose-Response Relationship, Drug, Epithelial Cells/*drug effects/enzymology/metabolism, Hydroxylation, Liver/*cytology, Polychlorinated Biphenyls/metabolism/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology/metabolism, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
2004
Vondrácek, Jan; Chramostová, Katerina; Plísková, Martina; Bláha, Ludek; Brack, Werner; Kozubík, Alois; Machala, Miroslav
In: Environmental toxicology and chemistry, vol. 23, no. 9, pp. 2214–2220, 2004, ISSN: 0730-7268, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*drug effects, Carcinogens, Cell Count, Cell Line, Cell Proliferation/drug effects, Environmental/*pharmacology, Estrogen/*drug effects, Estrogens/*pharmacology, Furans/*pharmacology, Molecular Structure, Naphthalenes/*pharmacology, Rats, Receptors, S Phase/drug effects, Tumor
@article{vondracek_induction_2004,
title = {Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans.},
author = {Jan Vondrácek and Katerina Chramostová and Martina Plísková and Ludek Bláha and Werner Brack and Alois Kozubík and Miroslav Machala},
doi = {10.1897/03-620},
issn = {0730-7268},
year = {2004},
date = {2004-09-01},
journal = {Environmental toxicology and chemistry},
volume = {23},
number = {9},
pages = {2214–2220},
abstract = {A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon/*drug effects, Carcinogens, Cell Count, Cell Line, Cell Proliferation/drug effects, Environmental/*pharmacology, Estrogen/*drug effects, Estrogens/*pharmacology, Furans/*pharmacology, Molecular Structure, Naphthalenes/*pharmacology, Rats, Receptors, S Phase/drug effects, Tumor},
pubstate = {published},
tppubtype = {article}
}
Chramostová, Katerina; Vondrácek, Jan; Sindlerová, Lenka; Vojtesek, Borivoj; Kozubík, Alois; Machala, Miroslav
Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells. Journal Article
In: Toxicology and applied pharmacology, vol. 196, no. 1, pp. 136–148, 2004, ISSN: 0041-008X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/metabolism, Cell Division/drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/metabolism, Dose-Response Relationship, Drug, Epithelial Cells/*drug effects/enzymology/metabolism, Liver/*cytology, Mutagens/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology/metabolism, Tumor Suppressor Protein p53/biosynthesis
@article{chramostova_polycyclic_2004,
title = {Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells.},
author = {Katerina Chramostová and Jan Vondrácek and Lenka Sindlerová and Borivoj Vojtesek and Alois Kozubík and Miroslav Machala},
doi = {10.1016/j.taap.2003.12.008},
issn = {0041-008X},
year = {2004},
date = {2004-04-01},
journal = {Toxicology and applied pharmacology},
volume = {196},
number = {1},
pages = {136–148},
abstract = {Although many polycyclic aromatic hydrocarbons (PAHs) are recognized as potent mutagens and carcinogens, relatively little is known about their role in the tumor promotion. It is known that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can induce release of rat hepatic oval epithelial cells from contact inhibition by a mechanism possibly involving the aryl hydrocarbon receptor (AhR) activation. Many PAHs are AhR ligands and are known to act as transient inducers of AhR-mediated activity. In this study, effects of 19 selected PAHs on proliferation of confluent rat liver epithelial WB-F344 cells were investigated. Non-mutagens that are weak activators or nonactivators of AhR-mediated activity had no effect on cell proliferation. Relatively strong or moderate AhR ligands with low mutagenic potencies, such as benzofluoranthenes, benz[a]anthracene, and chrysene, were found to increase cell numbers, which corresponded to an increased percentage of cells entering S-phase. Strong mutagens, including benzo[a]pyrene and dibenzo[a,l]pyrene, increased a percentage of cells in S-phase without inducing a concomitant increase in cell numbers. The treatment with mutagenic PAHs was associated with an increased DNA synthesis and induction of cell death, which corresponded with the activation of p53 tumor suppressor. Apoptosis was blocked by pifithrin-alpha, the chemical inhibitor of p53. Both weakly and strongly mutagenic PAHs known as AhR ligands were found to induce significant increase of cytochrome P4501A activity, suggesting a presence of functional AhR. The results of the present study seem to suggest that a release from contact inhibition could be a part of tumor promoting effects of AhR-activating PAHs; however, the genotoxic effects of some PAHs associated with p53 activation might interfere with this process.},
note = {Place: United States},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/metabolism, Cell Division/drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/metabolism, Dose-Response Relationship, Drug, Epithelial Cells/*drug effects/enzymology/metabolism, Liver/*cytology, Mutagens/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology/metabolism, Tumor Suppressor Protein p53/biosynthesis},
pubstate = {published},
tppubtype = {article}
}
Machala, Miroslav; Bláha, Ludek; Lehmler, Hans-Joachim; Plísková, Martina; Májková, Zuzana; Kapplová, Petra; Sovadinová, Iva; Vondrácek, Jan; Malmberg, Tina; Robertson, Larry W.
In: Chemical research in toxicology, vol. 17, no. 3, pp. 340–347, 2004, ISSN: 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Adenocarcinoma/metabolism/pathology, Animals, Aryl Hydrocarbon/*biosynthesis, Breast Neoplasms/metabolism/pathology, Carcinoma, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Down-Regulation, Drug, Environmental Pollutants/*toxicity, Epithelial Cells/drug effects/metabolism, Estrogen/*biosynthesis, Gap Junctions/*drug effects/metabolism, Hepatocellular/metabolism/pathology, Humans, Hydroquinones, Hydroxylation, Liver Neoplasms/metabolism/pathology, Neoplasms/*metabolism/pathology, Polychlorinated Biphenyls/*toxicity, Quinones/*toxicity, Rats, Receptors, Tumor
@article{machala_toxicity_2004,
title = {Toxicity of hydroxylated and quinoid PCB metabolites: inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells.},
author = {Miroslav Machala and Ludek Bláha and Hans-Joachim Lehmler and Martina Plísková and Zuzana Májková and Petra Kapplová and Iva Sovadinová and Jan Vondrácek and Tina Malmberg and Larry W. Robertson},
doi = {10.1021/tx030034v},
issn = {0893-228X},
year = {2004},
date = {2004-03-01},
journal = {Chemical research in toxicology},
volume = {17},
number = {3},
pages = {340–347},
abstract = {In the present study, a series of 32 hydroxy- and dihydroxy-polychlorinated biphenyls (OH-PCBs) and PCB-derived quinones were prepared and evaluated for their in vitro potencies to downregulate gap junctional intercellular communication (GJIC) and to activate the aryl hydrocarbon receptor (AhR) and the estrogen receptor alpha (ER) in well-established liver and mammary cell models. The rat liver epithelial cell line WB-F344 was used for in vitro determination of GJIC inhibition; the AhR-inducing activity was determined in the rat hepatoma H4IIE.Luc cells stably transfected with a luciferase reporter gene; ER-mediated activity was measured in two breast carcinoma cell lines, MVLN and T47D.Luc, stably transfected with luciferase under the control of estrogen responsive element. Acute inhibition of GJIC, potentially associated with tumor promotion, was detected after treatment with all OH-PCBs under study, with the persistent OH-PCBs being the strongest ones. Several compounds were found to significantly induce the AhR-mediated activity, including 4'-OH-PCB 79, a metabolite of PCB 77, and 2-(4'-chloro)- and 2-(3',4'-dichloro)-1,4-benzoquinones and 1,4-hydroquinones. Low molecular weight OH-PCBs, such as 3'-hydroxy, 4'-, and 3',4'-dihydroxy-4-chlorobiphenyl, elicited significant estrogenic activity and potentiated effect of 17beta-estradiol. Antiestrogenic potencies, determined in the presence of 17beta-estradiol, were found for persistent 4-OH-PCB 187, 4-OH-PCB 146, and some low chlorinated PCB derivatives. However, no apparent association between induction of AhR activity and antiestrogenicity was observed. The majority of the OH-PCBs suppressed the 17beta-estradiol response only at cytotoxic concentrations. Spearman's rank correlations were calculated for these biological data and the physicochemical descriptors, hydrophobicity (log P), molar volume, pKa, log D, and dihedral angle. Significant correlations were found between potency to downregulate GJIC and log P and molar volume (R = -0.7, p < 0.0001). Antiestrogenic effects were also negatively correlated with hydrophobicity and molar volume. No significant correlations among other biological end points and the physicochemical descriptors were observed for the entire set of compounds. These results show that oxygenated PCB metabolites are capable of multiple adverse effects, including gap junction inhibition, AhR-mediated activity, and (anti)estrogenicity. The inhibition of GJIC by OH-PCBs represents a novel mode of action of both the lower chlorinated and the persisting high molecular weight OH-PCBs.},
note = {Place: United States},
keywords = {Adenocarcinoma/metabolism/pathology, Animals, Aryl Hydrocarbon/*biosynthesis, Breast Neoplasms/metabolism/pathology, Carcinoma, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Down-Regulation, Drug, Environmental Pollutants/*toxicity, Epithelial Cells/drug effects/metabolism, Estrogen/*biosynthesis, Gap Junctions/*drug effects/metabolism, Hepatocellular/metabolism/pathology, Humans, Hydroquinones, Hydroxylation, Liver Neoplasms/metabolism/pathology, Neoplasms/*metabolism/pathology, Polychlorinated Biphenyls/*toxicity, Quinones/*toxicity, Rats, Receptors, Tumor},
pubstate = {published},
tppubtype = {article}
}