2020
Drápela, Stanislav; Khirsariya, Prashant; Weerden, Wytske M.; Fedr, Radek; Suchánková, Tereza; Búzová, Diana; Červený, Jan; Hampl, Aleš; Puhr, Martin; Watson, William R.; Culig, Zoran; Krejčí, Lumír; Paruch, Kamil; Souček, Karel
In: Molecular oncology, vol. 14, no. 10, pp. 2487–2503, 2020, ISSN: 1878-0261 1574-7891, (Place: United States).
Abstract | Links | BibTeX | Tags: *Mitosis/drug effects, Animals, castration-resistant prostate cancer, Cell Death/drug effects, Cell Line, Cell Proliferation/drug effects, Checkpoint Kinase 1, Checkpoint Kinase 1/*antagonists & inhibitors/metabolism, Deoxycytidine/*analogs & derivatives/pharmacology, Docetaxel resistance, Docetaxel/*pharmacology, Drug resistance, gemcitabine, Humans, Male, Mice, mitotic catastrophe, MU380, Neoplasm/*drug effects, Piperidines/chemistry/*pharmacology, Prostatic Neoplasms/*pathology, Pyrazoles/chemistry/*pharmacology, Pyrimidines/chemistry/*pharmacology, S Phase/drug effects, SCID, Tumor, Xenograft Model Antitumor Assays
@article{drapela_chk1_2020,
title = {The CHK1 inhibitor MU380 significantly increases the sensitivity of human docetaxel-resistant prostate cancer cells to gemcitabine through the induction of mitotic catastrophe.},
author = {Stanislav Drápela and Prashant Khirsariya and Wytske M. Weerden and Radek Fedr and Tereza Suchánková and Diana Búzová and Jan Červený and Aleš Hampl and Martin Puhr and William R. Watson and Zoran Culig and Lumír Krejčí and Kamil Paruch and Karel Souček},
doi = {10.1002/1878-0261.12756},
issn = {1878-0261 1574-7891},
year = {2020},
date = {2020-10-01},
journal = {Molecular oncology},
volume = {14},
number = {10},
pages = {2487–2503},
abstract = {As treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa. Synergistic induction of DNA damage with CHK1 inhibition represents a promising therapeutic approach that has been tested in many types of malignancies, but not in chemoresistant mCRPC. Here, we report that such therapeutic approach may be exploited using the synergistic action of the antimetabolite gemcitabine (GEM) and CHK1 inhibitors SCH900776 and MU380 in docetaxel-resistant (DR) mCRPC. Given the results, both CHK1 inhibitors significantly potentiated the sensitivity to GEM in a panel of chemo-naïve and matched DR PCa cell lines under 2D conditions. MU380 exhibited a stronger synergistic effect with GEM than clinical candidate SCH900776. MU380 alone or in combination with GEM significantly reduced spheroid size and increased apoptosis in all patient-derived xenograft 3D cultures, with a higher impact in DR models. Combined treatment induced premature mitosis from G1 phase resulting in the mitotic catastrophe as a prestage of apoptosis. Finally, treatment by MU380 alone, or in combination with GEM, significantly inhibited tumor growth of both PC339-DOC and PC346C-DOC xenograft models in mice. Taken together, our data suggest that metabolically robust and selective CHK1 inhibitor MU380 can bypass docetaxel resistance and improve the effectiveness of GEM in DR mCRPC models. This approach might allow for dose reduction of GEM and thereby minimize undesired toxicity and may represent a therapeutic option for patients with incurable DR mCRPC.},
note = {Place: United States},
keywords = {*Mitosis/drug effects, Animals, castration-resistant prostate cancer, Cell Death/drug effects, Cell Line, Cell Proliferation/drug effects, Checkpoint Kinase 1, Checkpoint Kinase 1/*antagonists & inhibitors/metabolism, Deoxycytidine/*analogs & derivatives/pharmacology, Docetaxel resistance, Docetaxel/*pharmacology, Drug resistance, gemcitabine, Humans, Male, Mice, mitotic catastrophe, MU380, Neoplasm/*drug effects, Piperidines/chemistry/*pharmacology, Prostatic Neoplasms/*pathology, Pyrazoles/chemistry/*pharmacology, Pyrimidines/chemistry/*pharmacology, S Phase/drug effects, SCID, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
2019
Boudny, Miroslav; Zemanova, Jana; Khirsariya, Prashant; Borsky, Marek; Verner, Jan; Cerna, Jana; Oltova, Alexandra; Seda, Vaclav; Mraz, Marek; Jaros, Josef; Jaskova, Zuzana; Spunarova, Michaela; Brychtova, Yvona; Soucek, Karel; Drapela, Stanislav; Kasparkova, Marie; Mayer, Jiri; Paruch, Kamil; Trbusek, Martin
Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells. Journal Article
In: Haematologica, vol. 104, no. 12, pp. 2443–2455, 2019, ISSN: 1592-8721 0390-6078, (Place: Italy).
Abstract | Links | BibTeX | Tags: *Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays
@article{boudny_novel_2019,
title = {Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells.},
author = {Miroslav Boudny and Jana Zemanova and Prashant Khirsariya and Marek Borsky and Jan Verner and Jana Cerna and Alexandra Oltova and Vaclav Seda and Marek Mraz and Josef Jaros and Zuzana Jaskova and Michaela Spunarova and Yvona Brychtova and Karel Soucek and Stanislav Drapela and Marie Kasparkova and Jiri Mayer and Kamil Paruch and Martin Trbusek},
doi = {10.3324/haematol.2018.203430},
issn = {1592-8721 0390-6078},
year = {2019},
date = {2019-12-01},
journal = {Haematologica},
volume = {104},
number = {12},
pages = {2443–2455},
abstract = {Introduction of small-molecule inhibitors of B-cell receptor signaling and BCL2 protein significantly improves therapeutic options in chronic lymphocytic leukemia. However, some patients suffer from adverse effects mandating treatment discontinuation, and cases with TP53 defects more frequently experience early progression of the disease. Development of alternative therapeutic approaches is, therefore, of critical importance. Here we report details of the anti-chronic lymphocytic leukemia single-agent activity of MU380, our recently identified potent, selective, and metabolically robust inhibitor of checkpoint kinase 1. We also describe a newly developed enantioselective synthesis of MU380, which allows preparation of gram quantities of the substance. Checkpoint kinase 1 is a master regulator of replication operating primarily in intra-S and G(2)/M cell cycle checkpoints. Initially tested in leukemia and lymphoma cell lines, MU380 significantly potentiated efficacy of gemcitabine, a clinically used inducer of replication stress. Moreover, MU380 manifested substantial single-agent activity in both TP53-wild type and TP53-mutated leukemia and lymphoma cell lines. In chronic lymphocytic leukemia-derived cell lines MEC-1, MEC-2 (both TP53-mut), and OSU-CLL (TP53-wt) the inhibitor impaired cell cycle progression and induced apoptosis. In primary clinical samples, MU380 used as a single-agent noticeably reduced the viability of unstimulated chronic lymphocytic leukemia cells as well as those induced to proliferate by anti-CD40/IL-4 stimuli. In both cases, effects were comparable in samples harboring p53 pathway dysfunction (TP53 mutations or ATM mutations) and TP53-wt/ATM-wt cells. Lastly, MU380 also exhibited significant in vivo activity in a xenotransplant mouse model (immunodeficient strain NOD-scid IL2Rγ(null) ) where it efficiently suppressed growth of subcutaneous tumors generated from MEC-1 cells.},
note = {Place: Italy},
keywords = {*Drug Synergism, *Mutation, Animals, Antimetabolites, Antineoplastic/pharmacology, Apoptosis, B-Cell/*drug therapy/genetics/pathology, Biomarkers, Cell Cycle, Cell Proliferation, Checkpoint Kinase 1/*antagonists & inhibitors, Chronic, Cultured, Deoxycytidine/analogs & derivatives/pharmacology, Drug resistance, Female, gemcitabine, Gene Expression Regulation, Humans, Inbred NOD, Leukemia, Lymphocytic, Mice, Neoplasm/drug effects, Neoplastic/*drug effects, Piperidines/*pharmacology, Protein Kinase Inhibitors/pharmacology, Pyrazoles/*pharmacology, Pyrimidines/*pharmacology, SCID, Tumor Cells, Tumor Suppressor Protein p53/*genetics, Tumor/genetics, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
2018
Vargová, Jana; Mikeš, Jaromír; Jendželovský, Rastislav; Mikešová, Lucia; Kuchárová, Barbora; Čulka, Ľubomír; Fedr, Radek; Remšík, Ján; Souček, Karel; Kozubík, Alois; Fedoročko, Peter
Hypericin affects cancer side populations via competitive inhibition of BCRP. Journal Article
In: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 99, pp. 511–522, 2018, ISSN: 1950-6007 0753-3322, (Place: France).
Abstract | Links | BibTeX | Tags: ABC transporters, Aldehyde Dehydrogenase/metabolism, Animals, Anthracenes, ATP Binding Cassette Transporter, Biomarkers, Cancer stem-like cells, Carcinogenesis/drug effects/metabolism/pathology, Cell Line, Cellular/drug effects/metabolism/pathology, Clone Cells, Drug resistance, Humans, Hypericin, Member 1/metabolism, Member 2/*metabolism, Mice, Neoplasm Proteins/*metabolism, Neoplasms/*metabolism/*pathology, Neoplastic Stem Cells/drug effects/metabolism/pathology, Perylene/*analogs & derivatives/pharmacology, Phenotype, SCID, Side population, Side-Population Cells/drug effects/*pathology, Spheroids, St. John’s wort, Subfamily B, Subfamily G, Substrate Specificity/drug effects, Survival Analysis, Tumor, Tumor/metabolism
@article{vargova_hypericin_2018,
title = {Hypericin affects cancer side populations via competitive inhibition of BCRP.},
author = {Jana Vargová and Jaromír Mikeš and Rastislav Jendželovský and Lucia Mikešová and Barbora Kuchárová and Ľubomír Čulka and Radek Fedr and Ján Remšík and Karel Souček and Alois Kozubík and Peter Fedoročko},
doi = {10.1016/j.biopha.2018.01.074},
issn = {1950-6007 0753-3322},
year = {2018},
date = {2018-03-01},
journal = {Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie},
volume = {99},
pages = {511–522},
abstract = {OBJECTIVE: Cancer stem-like cells (CSLCs) are considered a root of tumorigenicity and resistance. However, their identification remains challenging. The use of the side population (SP) assay as a credible marker of CSLCs remains controversial. The SP assay relies on the elevated activity of ABC transporters that, in turn, can be modulated by hypericin (HYP), a photosensitizer and bioactive compound of St. John's Wort (Hypericum perforatum), a popular over-the-counter antidepressant. Here we aimed to comprehensively characterize the SP phenotype of cancer cells and to determine the impact of HYP on these cells. METHODS: Flow cytometry and sorting-based assays were employed, including CD24-, CD44-, CD133-, and ALDH-positivity, clonogenicity, 3D-forming ability, ABC transporter expression and activity, and intracellular accumulation of HYP/Hoechst 33342. The tumorigenic ability of SP, nonSP, and HYP-treated cells was verified by xenotransplantation into immunodeficient mice. RESULTS: The SP phenotype was associated with elevated expression of several investigated transporters and more intensive growth in non-adherent conditions but not with higher clonogenicity, tumorigenicity or ALDH-positivity. Despite stimulated BCRP level and MRP1 activity, HYP reversibly decreased the SP proportion, presumably via competitive inhibition of BCRP. HYP-selected SP cells acquired additional traits of resistance and extensively eliminated HYP. CONCLUSIONS: Our results suggest that SP is not an unequivocal CSLC-marker. However, SP could play an important role in modulating HYP-treatment and serve as a negative predictive tool for HYP-based therapies. Moreover, the use of supplements containing HYP by cancer patients should be carefully considered, due to its proposed effect on drug efflux and complex impact on tumor cells, which have not yet been sufficiently characterized.},
note = {Place: France},
keywords = {ABC transporters, Aldehyde Dehydrogenase/metabolism, Animals, Anthracenes, ATP Binding Cassette Transporter, Biomarkers, Cancer stem-like cells, Carcinogenesis/drug effects/metabolism/pathology, Cell Line, Cellular/drug effects/metabolism/pathology, Clone Cells, Drug resistance, Humans, Hypericin, Member 1/metabolism, Member 2/*metabolism, Mice, Neoplasm Proteins/*metabolism, Neoplasms/*metabolism/*pathology, Neoplastic Stem Cells/drug effects/metabolism/pathology, Perylene/*analogs & derivatives/pharmacology, Phenotype, SCID, Side population, Side-Population Cells/drug effects/*pathology, Spheroids, St. John’s wort, Subfamily B, Subfamily G, Substrate Specificity/drug effects, Survival Analysis, Tumor, Tumor/metabolism},
pubstate = {published},
tppubtype = {article}
}
2017
Paculová, Hana; Kramara, Juraj; Šimečková, Šárka; Fedr, Radek; Souček, Karel; Hylse, Ondřej; Paruch, Kamil; Svoboda, Marek; Mistrík, Martin; Kohoutek, Jiří
BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors. Journal Article
In: Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, vol. 39, no. 10, pp. 1010428317727479, 2017, ISSN: 1423-0380 1010-4283, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, BRCA1, BRCA1 Protein/antagonists & inhibitors/*genetics, CDK12, Checkpoint Kinase 1/*genetics, CHK1 inhibitor, Colorectal Neoplasms/drug therapy/*genetics/pathology, Cyclin-Dependent Kinases/antagonists & inhibitors/*genetics, DNA damage response, DNA Damage/drug effects, Drug resistance, Gene Expression Regulation, Gene Silencing, HCT116 Cells, Humans, Mice, Neoplasm/genetics, Neoplastic/drug effects, Poly (ADP-Ribose) Polymerase-1/genetics, Pyrazoles/administration & dosage, Pyrimidines/administration & dosage, Transcription, Xenograft Model Antitumor Assays
@article{paculova_brca1_2017,
title = {BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors.},
author = {Hana Paculová and Juraj Kramara and Šárka Šimečková and Radek Fedr and Karel Souček and Ondřej Hylse and Kamil Paruch and Marek Svoboda and Martin Mistrík and Jiří Kohoutek},
doi = {10.1177/1010428317727479},
issn = {1423-0380 1010-4283},
year = {2017},
date = {2017-10-01},
journal = {Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine},
volume = {39},
number = {10},
pages = {1010428317727479},
abstract = {A broad spectrum of tumors develop resistance to classic chemotherapy, necessitating the discovery of new therapies. One successful strategy exploits the synthetic lethality between poly(ADP-ribose) polymerase 1/2 proteins and DNA damage response genes, including BRCA1, a factor involved in homologous recombination-mediated DNA repair, and CDK12, a transcriptional kinase known to regulate the expression of DDR genes. CHK1 inhibitors have been shown to enhance the anti-cancer effect of DNA-damaging compounds. Since loss of BRCA1 increases replication stress and leads to DNA damage, we tested a hypothesis that CDK12- or BRCA1-depleted cells rely extensively on S-phase-related CHK1 functions for survival. The silencing of BRCA1 or CDK12 sensitized tumor cells to CHK1 inhibitors in vitro and in vivo. BRCA1 downregulation combined with CHK1 inhibition induced excessive amounts of DNA damage, resulting in an inability to complete the S-phase. Therefore, we suggest CHK1 inhibition as a strategy for targeting BRCA1- or CDK12-deficient tumors.},
note = {Place: Netherlands},
keywords = {Animals, BRCA1, BRCA1 Protein/antagonists & inhibitors/*genetics, CDK12, Checkpoint Kinase 1/*genetics, CHK1 inhibitor, Colorectal Neoplasms/drug therapy/*genetics/pathology, Cyclin-Dependent Kinases/antagonists & inhibitors/*genetics, DNA damage response, DNA Damage/drug effects, Drug resistance, Gene Expression Regulation, Gene Silencing, HCT116 Cells, Humans, Mice, Neoplasm/genetics, Neoplastic/drug effects, Poly (ADP-Ribose) Polymerase-1/genetics, Pyrazoles/administration & dosage, Pyrimidines/administration & dosage, Transcription, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
Samadder, Pounami; Suchánková, Tereza; Hylse, Ondřej; Khirsariya, Prashant; Nikulenkov, Fedor; Drápela, Stanislav; Straková, Nicol; Vaňhara, Petr; Vašíčková, Kateřina; Kolářová, Hana; Binó, Lucia; Bittová, Miroslava; Ovesná, Petra; Kollár, Peter; Fedr, Radek; Ešner, Milan; Jaroš, Josef; Hampl, Aleš; Krejčí, Lumír; Paruch, Kamil; Souček, Karel
In: Molecular cancer therapeutics, vol. 16, no. 9, pp. 1831–1842, 2017, ISSN: 1538-8514 1535-7163, (Place: United States).
Abstract | Links | BibTeX | Tags: Animal, Animals, Antineoplastic Agents/*chemical synthesis/*pharmacology, Apoptosis/drug effects, Biomarkers, Cell Cycle Checkpoints/drug effects, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1/*antagonists & inhibitors, Dealkylation/drug effects, Disease Models, Dose-Response Relationship, Drug, Drug resistance, Humans, Methylation, Mice, Molecular Structure, Neoplasm/*drug effects, Protein Kinase Inhibitors/*chemical synthesis/*pharmacology, Pyrazoles/pharmacology, Pyrimidines/pharmacology, Tumor, Xenograft Model Antitumor Assays
@article{samadder_synthesis_2017,
title = {Synthesis and Profiling of a Novel Potent Selective Inhibitor of CHK1 Kinase Possessing Unusual N-trifluoromethylpyrazole Pharmacophore Resistant to Metabolic N-dealkylation.},
author = {Pounami Samadder and Tereza Suchánková and Ondřej Hylse and Prashant Khirsariya and Fedor Nikulenkov and Stanislav Drápela and Nicol Straková and Petr Vaňhara and Kateřina Vašíčková and Hana Kolářová and Lucia Binó and Miroslava Bittová and Petra Ovesná and Peter Kollár and Radek Fedr and Milan Ešner and Josef Jaroš and Aleš Hampl and Lumír Krejčí and Kamil Paruch and Karel Souček},
doi = {10.1158/1535-7163.MCT-17-0018},
issn = {1538-8514 1535-7163},
year = {2017},
date = {2017-09-01},
journal = {Molecular cancer therapeutics},
volume = {16},
number = {9},
pages = {1831–1842},
abstract = {Checkpoint-mediated dependency of tumor cells can be deployed to selectively kill them without substantial toxicity to normal cells. Specifically, loss of CHK1, a serine threonine kinase involved in the surveillance of the G(2)-M checkpoint in the presence of replication stress inflicted by DNA-damaging drugs, has been reported to dramatically influence the viability of tumor cells. CHK1's pivotal role in maintaining genomic stability offers attractive opportunity for increasing the selectivity, effectivity, and reduced toxicity of chemotherapy. Some recently identified CHK1 inhibitors entered clinical trials in combination with DNA antimetabolites. Herein, we report synthesis and profiling of MU380, a nontrivial analogue of clinically profiled compound SCH900776 possessing the highly unusual N-trifluoromethylpyrazole motif, which was envisioned not to undergo metabolic oxidative dealkylation and thereby provide greater robustness to the compound. MU380 is a selective and potent inhibitor of CHK1 which sensitizes a variety of tumor cell lines to hydroxyurea or gemcitabine up to 10 times. MU380 shows extended inhibitory effects in cells, and unlike SCH900776, does not undergo in vivo N-dealkylation to the significantly less selective metabolite. Compared with SCH900776, MU380 in combination with GEM causes higher accumulation of DNA damage in tumor cells and subsequent enhanced cell death, and is more efficacious in the A2780 xenograft mouse model. Overall, MU380 represents a novel state-of-the-art CHK1 inhibitor with high potency, selectivity, and improved metabolic robustness to oxidative N-dealkylation. Mol Cancer Ther; 16(9); 1831-42. ©2017 AACR.},
note = {Place: United States},
keywords = {Animal, Animals, Antineoplastic Agents/*chemical synthesis/*pharmacology, Apoptosis/drug effects, Biomarkers, Cell Cycle Checkpoints/drug effects, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1/*antagonists & inhibitors, Dealkylation/drug effects, Disease Models, Dose-Response Relationship, Drug, Drug resistance, Humans, Methylation, Mice, Molecular Structure, Neoplasm/*drug effects, Protein Kinase Inhibitors/*chemical synthesis/*pharmacology, Pyrazoles/pharmacology, Pyrimidines/pharmacology, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
2010
Svihálková-Sindlerová, Lenka; Foltinová, Vendula; Vaculová, Alena; Horváth, Viktor; Soucek, Karel; Sova, Petr; Hofmanová, Jirina; Kozubík, Alois
LA-12 overcomes confluence-dependent resistance of HT-29 colon cancer cells to Pt (II) compounds. Journal Article
In: Anticancer research, vol. 30, no. 4, pp. 1183–1188, 2010, ISSN: 1791-7530 0250-7005, (Place: Greece).
Abstract | BibTeX | Tags: Adenocarcinoma/*drug therapy, Amantadine/*analogs & derivatives/pharmacology, Antineoplastic Agents/*pharmacology, Apoptosis/drug effects, Cell Adhesion/drug effects, Cisplatin/pharmacology, Colonic Neoplasms/*drug therapy/pathology, Dose-Response Relationship, Drug, Drug resistance, HT29 Cells, Humans, Neoplasm, Organoplatinum Compounds/*pharmacology, Oxaliplatin
@article{svihalkova-sindlerova_-12_2010,
title = {LA-12 overcomes confluence-dependent resistance of HT-29 colon cancer cells to Pt (II) compounds.},
author = {Lenka Svihálková-Sindlerová and Vendula Foltinová and Alena Vaculová and Viktor Horváth and Karel Soucek and Petr Sova and Jirina Hofmanová and Alois Kozubík},
issn = {1791-7530 0250-7005},
year = {2010},
date = {2010-04-01},
journal = {Anticancer research},
volume = {30},
number = {4},
pages = {1183–1188},
abstract = {BACKGROUND: LA-12 is a new platinum (IV) drug with promising cytotoxic effects in a wide range of cancer cell lines. Its confluence-dependent effects were compared with cisplatin (CDDP) and oxaliplatin (L-OHP) in HT-29 cells. MATERIALS AND METHODS: Cytotoxicity was determined by MTT test, eosin exclusion assay, and cell number quantification. The cell cycle was analysed using propidium iodide DNA staining (flow cytometry), apoptosis by phosphatidylserine externalisation (annexin-V assay), mitochondrial membrane potential by flow cytometry, nuclear morphology by means of fluorescence microscopy, and PARP cleavage by Western blotting. RESULTS: While L-OHP and CDDP were practically inactive in the subconfluent cell population, LA-12 showed a similar toxicity in both subconfluent and growing populations. All compounds induced apoptosis, although with different potentials. CONCLUSION: LA-12 was able to overcome confluence-dependent resistance of HT-29 cells observed for other platinum compounds, which may have potential therapeutic use in slowly growing tumours.},
note = {Place: Greece},
keywords = {Adenocarcinoma/*drug therapy, Amantadine/*analogs & derivatives/pharmacology, Antineoplastic Agents/*pharmacology, Apoptosis/drug effects, Cell Adhesion/drug effects, Cisplatin/pharmacology, Colonic Neoplasms/*drug therapy/pathology, Dose-Response Relationship, Drug, Drug resistance, HT29 Cells, Humans, Neoplasm, Organoplatinum Compounds/*pharmacology, Oxaliplatin},
pubstate = {published},
tppubtype = {article}
}
2006
Horváth, Viktor; Blanárová, Olga; Svihálková-Sindlerová, Lenka; Soucek, Karel; Hofmanová, Jirina; Sova, Petr; Kroutil, Ales; Fedorocko, Peter; Kozubík, Alois
Platinum(IV) complex with adamantylamine overcomes intrinsic resistance to cisplatin in ovarian cancer cells. Journal Article
In: Gynecologic oncology, vol. 102, no. 1, pp. 32–40, 2006, ISSN: 0090-8258, (Place: United States).
Abstract | Links | BibTeX | Tags: Adenocarcinoma/*drug therapy/metabolism/pathology, Amantadine/administration & dosage/analogs & derivatives, Antineoplastic Combined Chemotherapy Protocols/*pharmacology, Blotting, Cell Cycle/drug effects, Cell Growth Processes/drug effects, Cell Line, Cisplatin/administration & dosage, DNA, Drug resistance, Female, Humans, Neoplasm, Neoplasm Proteins/biosynthesis, Neoplasm/biosynthesis, Organoplatinum Compounds/administration & dosage/*pharmacology, Ovarian Neoplasms/*drug therapy/metabolism/pathology, Poly(ADP-ribose) Polymerases/metabolism, Tumor, Vault Ribonucleoprotein Particles/biosynthesis, Western
@article{horvath_platinumiv_2006,
title = {Platinum(IV) complex with adamantylamine overcomes intrinsic resistance to cisplatin in ovarian cancer cells.},
author = {Viktor Horváth and Olga Blanárová and Lenka Svihálková-Sindlerová and Karel Soucek and Jirina Hofmanová and Petr Sova and Ales Kroutil and Peter Fedorocko and Alois Kozubík},
doi = {10.1016/j.ygyno.2005.11.016},
issn = {0090-8258},
year = {2006},
date = {2006-07-01},
journal = {Gynecologic oncology},
volume = {102},
number = {1},
pages = {32–40},
abstract = {OBJECTIVES: The resistance of tumor cells to cisplatin remains a major cause of treatment failure in cancer patients. In this study, the ability of Pt(IV) complex with adamantylamine-LA-12 and its reduced counterpart with lower oxidation state Pt(II)-LA-9 to overcome intrinsic cisplatin resistance was investigated. METHODS: The ovarian adenocarcinoma SK-OV-3 cells were exposed to cisplatin, LA-9, or LA-12 for 72 h and the effects of drug concentrations that caused 10% or 50% inhibition of cell proliferation were determined. After 24-72 h of sustained exposure viability, apoptosis and inhibition of proliferation were analyzed. DNA synthesis and cell cycle analysis were performed simultaneously in order to determine the modulation of cell cycle after platinum complexes treatment. RESULTS: Lung Resistance-related Protein (LRP/MVP) was detected in SK-OV-3 cells but not in the other two ovarian cancer lines with different sensitivity to cisplatin. LRP/MVP overexpression may be an important factor contributing to intrinsic cisplatin resistance. Interestingly, Pt(IV) complex-LA-12 had approximately 2.7-fold lower IC(50) concentration than LA-9 or cisplatin in SK-OV-3 cells. Moreover, LA-12 caused persistent accumulation of cells in S-phase of the cell cycle while LA-9 and cisplatin treatment-induced S-phase arrest was transient and shifted to G(2)/M-phase at later intervals. Apoptosis seemed to be not the dominant type of cell death caused by such the derivatives, but it was the most intensive after LA-12 treatment. CONCLUSIONS: We found strong differences between effects of Pt(IV) complex-LA-12 and Pt(II) derivatives-LA-9 and cisplatin on cytokinetic parameters. Overall, LA-12 but not its reduced Pt(II) counterpart LA-9 is the compound effective in p53 null human ovarian cancer cells and it is able to overcome intrinsic cisplatin resistance in these cells.},
note = {Place: United States},
keywords = {Adenocarcinoma/*drug therapy/metabolism/pathology, Amantadine/administration & dosage/analogs & derivatives, Antineoplastic Combined Chemotherapy Protocols/*pharmacology, Blotting, Cell Cycle/drug effects, Cell Growth Processes/drug effects, Cell Line, Cisplatin/administration & dosage, DNA, Drug resistance, Female, Humans, Neoplasm, Neoplasm Proteins/biosynthesis, Neoplasm/biosynthesis, Organoplatinum Compounds/administration & dosage/*pharmacology, Ovarian Neoplasms/*drug therapy/metabolism/pathology, Poly(ADP-ribose) Polymerases/metabolism, Tumor, Vault Ribonucleoprotein Particles/biosynthesis, Western},
pubstate = {published},
tppubtype = {article}
}
2005
Kozubík, Alois; Horváth, Viktor; Svihálková-Sindlerová, Lenka; Soucek, Karel; Hofmanová, Jirina; Sova, Petr; Kroutil, Ales; Zák, Frantisek; Mistr, Adolf; Turánek, Jaroslav
In: Biochemical pharmacology, vol. 69, no. 3, pp. 373–383, 2005, ISSN: 0006-2952, (Place: England).
Abstract | Links | BibTeX | Tags: Amantadine/*analogs & derivatives/*pharmacology, Antineoplastic Agents/*pharmacology, Cell Cycle/drug effects, Cell Line, Cell Proliferation/drug effects, Cisplatin/*pharmacology, DNA Fragmentation/drug effects, Drug resistance, Female, Humans, Neoplasm, Organoplatinum Compounds/*pharmacology, Ovarian Neoplasms/*drug therapy/pathology, Poly(ADP-ribose) Polymerases/analysis, Tumor, Tumor Suppressor Protein p53/analysis
@article{kozubik_high_2005,
title = {High effectiveness of platinum(IV) complex with adamantylamine in overcoming resistance to cisplatin and suppressing proliferation of ovarian cancer cells in vitro.},
author = {Alois Kozubík and Viktor Horváth and Lenka Svihálková-Sindlerová and Karel Soucek and Jirina Hofmanová and Petr Sova and Ales Kroutil and Frantisek Zák and Adolf Mistr and Jaroslav Turánek},
doi = {10.1016/j.bcp.2004.09.005},
issn = {0006-2952},
year = {2005},
date = {2005-02-01},
journal = {Biochemical pharmacology},
volume = {69},
number = {3},
pages = {373–383},
abstract = {[(OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum(IV)], coded as LA-12, is an octahedral platinum(IV) complex containing a bulky hydrophobic ligand - adamantylamine. The use of bulky hydrophobic amines as non-leaving ligands, may increase uptake of the compound by the cancer cells. Therefore, the effects of LA-12 on sensitive (A2780) and cisplatin resistant (A2780cis) ovarian cancer cell lines were investigated and compared to those of cisplatin. IC(50) and IC(90) concentrations of LA-12 were 6- (A2780) or 18-fold (A2780cis) lower than those for cisplatin (MTT assay). Equitoxic concentrations (IC(50) or IC(90)) of both compounds caused a significant and similar time- and dose-dependent inhibition of cell proliferation and an increase in the number of floating cells which corresponded to the decrease of total cell viability. A different type and dynamics of cell cycle perturbation after cisplatin and LA-12 treatment were detected. Exposure to LA-12 resulted in transient accumulation of A2780 and A2780cis cells in S phase, while cisplatin caused G(2)/M arrest in sensitive and S phase arrest in resistant cells. A relatively low rate of apoptosis after exposure to IC(50) or IC(90) of both complexes was observed, markedly higher in resistant A2780cis cells. Western blot analysis indicated a concentration-dependent p53 level increase in both lines (higher after cisplatin treatment). PARP cleavage was observed only in A2780cis cells. In conclusion, LA-12 was found to be significantly more efficient than cisplatin, and it was able to overcome the acquired cisplatin resistance (showing resistance factor 2.84-fold lower than those for cisplatin). In spite of the low rate of apoptosis, LA-12 caused increase of p53 level and cell cycle perturbations in the ovarian cancer cell lines studied.},
note = {Place: England},
keywords = {Amantadine/*analogs & derivatives/*pharmacology, Antineoplastic Agents/*pharmacology, Cell Cycle/drug effects, Cell Line, Cell Proliferation/drug effects, Cisplatin/*pharmacology, DNA Fragmentation/drug effects, Drug resistance, Female, Humans, Neoplasm, Organoplatinum Compounds/*pharmacology, Ovarian Neoplasms/*drug therapy/pathology, Poly(ADP-ribose) Polymerases/analysis, Tumor, Tumor Suppressor Protein p53/analysis},
pubstate = {published},
tppubtype = {article}
}