2018
Strapáčová, Simona; Brenerová, Petra; Krčmář, Pavel; Andersson, Patrik; Ede, Karin I.; Duursen, Majorie B. M.; Berg, Martin; Vondráček, Jan; Machala, Miroslav
Relative effective potencies of dioxin-like compounds in rodent and human lung cell models. Journal Article
In: Toxicology, vol. 404-405, pp. 33–41, 2018, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: A549 Cells, Acute/methods, AhR, Animals, Dioxin-like compounds, Dioxins/*toxicity, Dose-Response Relationship, Drug, Endogenous target genes, Female, Humans, Lung epithelial cells, Lung/*drug effects/metabolism/*pathology, Mice, Rats, Relative effective potencies, Rodentia, Species Specificity, Sprague-Dawley, Toxicity Tests
@article{strapacova_relative_2018,
title = {Relative effective potencies of dioxin-like compounds in rodent and human lung cell models.},
author = {Simona Strapáčová and Petra Brenerová and Pavel Krčmář and Patrik Andersson and Karin I. Ede and Majorie B. M. Duursen and Martin Berg and Jan Vondráček and Miroslav Machala},
doi = {10.1016/j.tox.2018.05.004},
issn = {1879-3185 0300-483X},
year = {2018},
date = {2018-07-01},
journal = {Toxicology},
volume = {404-405},
pages = {33–41},
abstract = {Toxicity of dioxin-like compounds (DLCs), such as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls, is largely mediated via aryl hydrocarbon receptor (AhR) activation. AhR-mediated gene expression can be tissue-specific; however, the inducibility of AhR in the lungs, a major target of DLCs, remains poorly characterized. In this study, we developed relative effective potencies (REPs) for a series of DLCs in both rodent (MLE-12, RLE-6TN) and human (A549, BEAS-2B) lung and bronchial epithelial cell models, using expression of both canonical (CYP1A1, CYP1B1) and less well characterized (TIPARP, AHRR, ALDH3A1) AhR target genes. The use of rat, murine and human cell lines allowed us to determine both species-specific differences in sensitivity of responses to DLCs in lung cellular models and deviations from established WHO toxic equivalency factor values (TEF) values. Finally, expression of selected AhR target genes was determined in vivo, using lung tissues of female rats exposed to a single oral dose of DLCs and compared with the obtained in vitro data. All cell models were highly sensitive to DLCs, with murine MLE-12 cells being the most sensitive and human A549 cells being the least sensitive. Interestingly, we observed that four AhR target genes were more sensitive than CYP1A1 in lung cell models (CYP1B1, AHRR, TIPARP and/or ALDH3A1). We found some deviations, with strikingly low REPs for polychlorinated biphenyls PCBs 105, 167, 169 and 189 in rat RLE-6TN cells-derived REPs for a series of 20 DLCs evaluated in this study, as compared with WHO TEF values. For other DLCs, including PCBs 126, 118 and 156, REPs were generally in good accordance with WHO TEF values. This conclusion was supported by in vivo data obtained in rat lung tissue. However, we found that human lung REPs for 2,3,4,7,8-pentachlorodibenzofuran and PCB 126 were much lower than the respective rat lung REPs. Furthermore, PCBs 118 and 156 were almost inactive in these human cells. Our observations may have consequences for risk assessment. Given the differences observed between rat and human data sets, development of human-specific REP/TEFs, and the use of CYP1B1, AHRR, TIPARP and/or ALDH3A1 mRNA inducibility as sensitive endpoints, are recommended for assessment of relative effective potencies of DLCs.},
note = {Place: Ireland},
keywords = {A549 Cells, Acute/methods, AhR, Animals, Dioxin-like compounds, Dioxins/*toxicity, Dose-Response Relationship, Drug, Endogenous target genes, Female, Humans, Lung epithelial cells, Lung/*drug effects/metabolism/*pathology, Mice, Rats, Relative effective potencies, Rodentia, Species Specificity, Sprague-Dawley, Toxicity Tests},
pubstate = {published},
tppubtype = {article}
}
2017
Samadder, Pounami; Suchánková, Tereza; Hylse, Ondřej; Khirsariya, Prashant; Nikulenkov, Fedor; Drápela, Stanislav; Straková, Nicol; Vaňhara, Petr; Vašíčková, Kateřina; Kolářová, Hana; Binó, Lucia; Bittová, Miroslava; Ovesná, Petra; Kollár, Peter; Fedr, Radek; Ešner, Milan; Jaroš, Josef; Hampl, Aleš; Krejčí, Lumír; Paruch, Kamil; Souček, Karel
In: Molecular cancer therapeutics, vol. 16, no. 9, pp. 1831–1842, 2017, ISSN: 1538-8514 1535-7163, (Place: United States).
Abstract | Links | BibTeX | Tags: Animal, Animals, Antineoplastic Agents/*chemical synthesis/*pharmacology, Apoptosis/drug effects, Biomarkers, Cell Cycle Checkpoints/drug effects, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1/*antagonists & inhibitors, Dealkylation/drug effects, Disease Models, Dose-Response Relationship, Drug, Drug resistance, Humans, Methylation, Mice, Molecular Structure, Neoplasm/*drug effects, Protein Kinase Inhibitors/*chemical synthesis/*pharmacology, Pyrazoles/pharmacology, Pyrimidines/pharmacology, Tumor, Xenograft Model Antitumor Assays
@article{samadder_synthesis_2017,
title = {Synthesis and Profiling of a Novel Potent Selective Inhibitor of CHK1 Kinase Possessing Unusual N-trifluoromethylpyrazole Pharmacophore Resistant to Metabolic N-dealkylation.},
author = {Pounami Samadder and Tereza Suchánková and Ondřej Hylse and Prashant Khirsariya and Fedor Nikulenkov and Stanislav Drápela and Nicol Straková and Petr Vaňhara and Kateřina Vašíčková and Hana Kolářová and Lucia Binó and Miroslava Bittová and Petra Ovesná and Peter Kollár and Radek Fedr and Milan Ešner and Josef Jaroš and Aleš Hampl and Lumír Krejčí and Kamil Paruch and Karel Souček},
doi = {10.1158/1535-7163.MCT-17-0018},
issn = {1538-8514 1535-7163},
year = {2017},
date = {2017-09-01},
journal = {Molecular cancer therapeutics},
volume = {16},
number = {9},
pages = {1831–1842},
abstract = {Checkpoint-mediated dependency of tumor cells can be deployed to selectively kill them without substantial toxicity to normal cells. Specifically, loss of CHK1, a serine threonine kinase involved in the surveillance of the G(2)-M checkpoint in the presence of replication stress inflicted by DNA-damaging drugs, has been reported to dramatically influence the viability of tumor cells. CHK1's pivotal role in maintaining genomic stability offers attractive opportunity for increasing the selectivity, effectivity, and reduced toxicity of chemotherapy. Some recently identified CHK1 inhibitors entered clinical trials in combination with DNA antimetabolites. Herein, we report synthesis and profiling of MU380, a nontrivial analogue of clinically profiled compound SCH900776 possessing the highly unusual N-trifluoromethylpyrazole motif, which was envisioned not to undergo metabolic oxidative dealkylation and thereby provide greater robustness to the compound. MU380 is a selective and potent inhibitor of CHK1 which sensitizes a variety of tumor cell lines to hydroxyurea or gemcitabine up to 10 times. MU380 shows extended inhibitory effects in cells, and unlike SCH900776, does not undergo in vivo N-dealkylation to the significantly less selective metabolite. Compared with SCH900776, MU380 in combination with GEM causes higher accumulation of DNA damage in tumor cells and subsequent enhanced cell death, and is more efficacious in the A2780 xenograft mouse model. Overall, MU380 represents a novel state-of-the-art CHK1 inhibitor with high potency, selectivity, and improved metabolic robustness to oxidative N-dealkylation. Mol Cancer Ther; 16(9); 1831-42. ©2017 AACR.},
note = {Place: United States},
keywords = {Animal, Animals, Antineoplastic Agents/*chemical synthesis/*pharmacology, Apoptosis/drug effects, Biomarkers, Cell Cycle Checkpoints/drug effects, Cell Cycle/drug effects, Cell Line, Checkpoint Kinase 1/*antagonists & inhibitors, Dealkylation/drug effects, Disease Models, Dose-Response Relationship, Drug, Drug resistance, Humans, Methylation, Mice, Molecular Structure, Neoplasm/*drug effects, Protein Kinase Inhibitors/*chemical synthesis/*pharmacology, Pyrazoles/pharmacology, Pyrimidines/pharmacology, Tumor, Xenograft Model Antitumor Assays},
pubstate = {published},
tppubtype = {article}
}
2015
Kabátková, Markéta; Svobodová, Jana; Pěnčíková, Kateřina; Mohatad, Dilshad Shaik; Šmerdová, Lenka; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Toxicology letters, vol. 232, no. 1, pp. 113–121, 2015, ISSN: 1879-3169 0378-4274, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/genetics/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/genetics/metabolism, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects, Cell Transformation, Connexin 43/genetics/metabolism, Dose-Response Relationship, Drug, Enzyme Activation, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/*toxicity, Gap junctions, Gap Junctions/*drug effects/metabolism/pathology, Gene Expression Regulation/drug effects, Genetic/*drug effects, Inflammation, Inflammation/chemically induced/genetics/metabolism/pathology, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Molecular Weight, Neoplastic/chemically induced/metabolism/pathology, p38 Mitogen-Activated Protein Kinases/metabolism, PAHs, Rats, Receptors, Signal Transduction/drug effects, Time Factors, Transcription, Tumor Necrosis Factor-alpha/*toxicity
@article{kabatkova_interactive_2015,
title = {Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription.},
author = {Markéta Kabátková and Jana Svobodová and Kateřina Pěnčíková and Dilshad Shaik Mohatad and Lenka Šmerdová and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.toxlet.2014.09.023},
issn = {1879-3169 0378-4274},
year = {2015},
date = {2015-01-01},
journal = {Toxicology letters},
volume = {232},
number = {1},
pages = {113–121},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) with lower molecular weight exhibit lesser genotoxicity and carcinogenicity than highly carcinogenic PAHs with a higher number of benzene rings. Nevertheless, they elicit specific effects linked with tumor promotion, such as acute inhibition of gap junctional intercellular communication (GJIC). Although inflammatory reaction may alter bioactivation and toxicity of carcinogenic PAHs, little is known about the impact of pro-inflammatory cytokines on toxic effects of the low-molecular-weight PAHs. Here, we investigated the impact of a pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), on the effects associated with tumor promotion and with induction of the aryl hydrocarbon receptor (AhR)-dependent gene expression in rat liver epithelial cells. We found that a prolonged incubation with TNF-α induced a down-regulation of GJIC, associated with reduced expression of connexin 43 (Cx43), a major connexin isoform found in liver epithelial cells. The Cx43 down-regulation was partly mediated by the activity of the mitogen-activated protein (MAP) p38 kinase. Independently of GJIC modulation, or p38 activation, TNF-α potentiated the AhR-dependent proliferative effect of a model low-molecular-weight PAH, fluoranthene, on contact-inhibited cells. In contrast, this pro-inflammatory cytokine repressed the fluoranthene-induced expression of a majority of model AhR gene targets, such as Cyp1a1, Ahrr or Tiparp. The results of the present study indicate that inflammatory reaction may differentially modulate various toxic effects of low-molecular-weight PAHs; the exposure to pro-inflammatory cytokines may both strengthen (inhibition of GJIC, disruption of contact inhibition) and repress (expression of a majority of AhR-dependent genes) their impact on toxic endpoints associated with carcinogenesis.},
note = {Place: Netherlands},
keywords = {Animals, Aryl hydrocarbon receptor, Aryl Hydrocarbon/*agonists/genetics/metabolism, Basic Helix-Loop-Helix Transcription Factors/*agonists/genetics/metabolism, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Proliferation/*drug effects, Cell Transformation, Connexin 43/genetics/metabolism, Dose-Response Relationship, Drug, Enzyme Activation, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/*toxicity, Gap junctions, Gap Junctions/*drug effects/metabolism/pathology, Gene Expression Regulation/drug effects, Genetic/*drug effects, Inflammation, Inflammation/chemically induced/genetics/metabolism/pathology, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Molecular Weight, Neoplastic/chemically induced/metabolism/pathology, p38 Mitogen-Activated Protein Kinases/metabolism, PAHs, Rats, Receptors, Signal Transduction/drug effects, Time Factors, Transcription, Tumor Necrosis Factor-alpha/*toxicity},
pubstate = {published},
tppubtype = {article}
}
2014
Ghorbanzadeh, Mehdi; Ede, Karin I.; Larsson, Malin; Duursen, Majorie B. M.; Poellinger, Lorenz; Lücke-Johansson, Sandra; Machala, Miroslav; Pěnčíková, Kateřina; Vondráček, Jan; Berg, Martin; Denison, Michael S.; Ringsted, Tine; Andersson, Patrik L.
In: Chemical research in toxicology, vol. 27, no. 7, pp. 1120–1132, 2014, ISSN: 1520-5010 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/agonists/*metabolism, Benzofurans/*pharmacology, Biological, Biological Assay, Cell Line, Computer Simulation, Dibenzofurans, Dose-Response Relationship, Drug, Guinea Pigs, Luciferases/metabolism, Mice, Models, Polychlorinated, Polychlorinated Biphenyls/*pharmacology, Polychlorinated Dibenzodioxins/*analogs & derivatives/pharmacology, Quantitative Structure-Activity Relationship, Rats, Receptors, Tumor
@article{ghorbanzadeh_vitro_2014,
title = {In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines.},
author = {Mehdi Ghorbanzadeh and Karin I. Ede and Malin Larsson and Majorie B. M. Duursen and Lorenz Poellinger and Sandra Lücke-Johansson and Miroslav Machala and Kateřina Pěnčíková and Jan Vondráček and Martin Berg and Michael S. Denison and Tine Ringsted and Patrik L. Andersson},
doi = {10.1021/tx5001255},
issn = {1520-5010 0893-228X},
year = {2014},
date = {2014-07-01},
journal = {Chemical research in toxicology},
volume = {27},
number = {7},
pages = {1120–1132},
abstract = {For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congeners tested in the rodent cell lines were partial agonists and less efficacious than 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For this reason, REPs were calculated for each congener using concentrations at which 20% of the maximal TCDD response was reached (REP20TCDD). REP20TCDD values obtained for PCDD/Fs were comparable with their toxic equivalency factors assigned by the World Health Organization (WHO-TEF), while those for PCBs were in general lower than the WHO-TEF values. Moreover, the guinea pig cell line was the most sensitive as indicated by the 20% effect concentrations of TCDD of 1.5, 5.6, and 11.0 pM for guinea pig, rat, and mouse cells, respectively. A similar response pattern was observed using multivariate statistical analysis between the three CALUX assays and the WHO-TEFs. The mouse assay showed minor deviation due to higher relative induction potential for 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,6,7,8-hexachlorodibenzofuran and lower for 1,2,3,4,6,7,8-heptachlorodibenzofuran and 3,3',4,4',5-pentachlorobiphenyl (PCB126). 2,3,7,8-Tetrachlorodibenzofuran was more than two times more potent in the mouse assay as compared with that of rat and guinea pig cells, while measured REP20TCDD for PCB126 was lower in mouse cells (0.05) as compared with that of the guinea pig (0.2) and rat (0.07). In order to provide REP20TCDD values for all WHO-TEF assigned compounds, quantitative structure-activity relationship (QSAR) models were developed. The QSAR models showed that specific electronic properties and molecular surface characteristics play important roles in the AhR-mediated response. In silico derived REP20TCDD values were generally consistent with the WHO-TEFs with a few exceptions. The QSAR models indicated that, e.g., 1,2,3,7,8-pentachlorodibenzofuran and 1,2,3,7,8,9-hexachlorodibenzofuran were more potent than given by their assigned WHO-TEF values, and the non-ortho PCB 81 was predicted, based on the guinea-pig model, to be 1 order of magnitude above its WHO-TEF value. By combining in vitro and in silico approaches, REPs were established for all WHO-TEF assigned compounds (except OCDD), which will provide future guidance in testing AhR-mediated responses of DLCs and to increase our understanding of species variation in AhR-mediated effects.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon/agonists/*metabolism, Benzofurans/*pharmacology, Biological, Biological Assay, Cell Line, Computer Simulation, Dibenzofurans, Dose-Response Relationship, Drug, Guinea Pigs, Luciferases/metabolism, Mice, Models, Polychlorinated, Polychlorinated Biphenyls/*pharmacology, Polychlorinated Dibenzodioxins/*analogs & derivatives/pharmacology, Quantitative Structure-Activity Relationship, Rats, Receptors, Tumor},
pubstate = {published},
tppubtype = {article}
}
2013
Andrysík, Zdeněk; Procházková, Jiřina; Kabátková, Markéta; Umannová, Lenka; Simečková, Pavlína; Kohoutek, Jiří; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Archives of toxicology, vol. 87, no. 3, pp. 491–503, 2013, ISSN: 1432-0738 0340-5761, (Place: Germany).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*agonists/genetics/metabolism, Benz(a)Anthracenes/toxicity, Carcinogens/*toxicity, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Transformation, Connexin 43/genetics/*metabolism, Contact Inhibition/*drug effects, Dose-Response Relationship, Down-Regulation, Drug, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/toxicity, Gap Junctions/*drug effects/metabolism/pathology, Gene Knockdown Techniques, Indoles/pharmacology, Ligands, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Neoplastic/chemically induced/metabolism/pathology, Phloroglucinol/analogs & derivatives/pharmacology, Phosphorylation, Polychlorinated Dibenzodioxins/toxicity, Proteasome Endopeptidase Complex/metabolism, Rats, Receptors, RNA Interference, Signal Transduction/*drug effects, Time Factors, Transfection
@article{andrysik_aryl_2013,
title = {Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication.},
author = {Zdeněk Andrysík and Jiřina Procházková and Markéta Kabátková and Lenka Umannová and Pavlína Simečková and Jiří Kohoutek and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1007/s00204-012-0963-7},
issn = {1432-0738 0340-5761},
year = {2013},
date = {2013-03-01},
journal = {Archives of toxicology},
volume = {87},
number = {3},
pages = {491–503},
abstract = {The aryl hydrocarbon receptor (AhR) contributes to the control of cell-to-cell communication, cell adhesion, migration or proliferation. In the present study, we investigated the regulation of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) during the AhR-dependent disruption of contact inhibition in non-tumorigenic liver epithelial cells. The contact inhibition of cell proliferation is a process restricting the cell division of confluent non-transformed cells, which is frequently abolished in cancer cells; however, the mechanisms contributing to its disruption are still only partially understood. Disruption of contact inhibition, which was induced by toxic AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or polycyclic aromatic hydrocarbons in epithelial WB-F344 cells, reduced Cx43 protein levels, possibly via enhanced proteasomal degradation, significantly decreased the amount of gap junction plaques and downregulated GJIC, in an AhR-dependent manner. Although both intracellular and membrane Cx43 pools were markedly reduced in cells released from contact inhibition by TCDD, siRNA-mediated Cx43 knock-down was not sufficient to stimulate proliferation in contact-inhibited cells. Our data suggest that downregulation of Cx43/GJIC in non-transformed epithelial cells is an inherent part of disruption of contact inhibition, which occurs at the post-transcriptional level. This process runs in parallel with alterations of other forms of cell-to-cell communication, thus suggesting that toxic AhR agonists may simultaneously abrogate contact inhibition and reduce GJIC, two essential mechanisms linked to deregulation of cell-to-cell communication during tumor promotion and progression.},
note = {Place: Germany},
keywords = {Animals, Aryl Hydrocarbon/*agonists/genetics/metabolism, Benz(a)Anthracenes/toxicity, Carcinogens/*toxicity, Cell Communication/*drug effects, Cell Line, Cell Proliferation, Cell Transformation, Connexin 43/genetics/*metabolism, Contact Inhibition/*drug effects, Dose-Response Relationship, Down-Regulation, Drug, Epithelial Cells/*drug effects/metabolism/pathology, Fluorenes/toxicity, Gap Junctions/*drug effects/metabolism/pathology, Gene Knockdown Techniques, Indoles/pharmacology, Ligands, Liver Neoplasms/chemically induced/metabolism/pathology, Liver/*drug effects/metabolism/pathology, Neoplastic/chemically induced/metabolism/pathology, Phloroglucinol/analogs & derivatives/pharmacology, Phosphorylation, Polychlorinated Dibenzodioxins/toxicity, Proteasome Endopeptidase Complex/metabolism, Rats, Receptors, RNA Interference, Signal Transduction/*drug effects, Time Factors, Transfection},
pubstate = {published},
tppubtype = {article}
}
2011
Gábelová, Alena; Valovičová, Zuzana; Mesárošová, Monika; Trilecová, Lenka; Hrubá, Eva; Marvanová, Soňa; Krčmár, Pavel; Milcová, Alena; Schmuczerová, Jana; Vondráček, Jan; Machala, Miroslav; Topinka, Jan
Genotoxicity of 7H-dibenzo[c,g]carbazole and its tissue-specific derivatives in human hepatoma HepG2 cells is related to CYP1A1/1A2 expression. Journal Article
In: Environmental and molecular mutagenesis, vol. 52, no. 8, pp. 636–645, 2011, ISSN: 1098-2280 0893-6692, (Place: United States).
Abstract | Links | BibTeX | Tags: Base Sequence, Blotting, Carbazoles/*toxicity, Cell Survival/drug effects, Chromosome-Defective/chemically induced/statistics & numerical data, Comet assay, Cytochrome P-450 CYP1A1/*genetics, Cytochrome P-450 CYP1A2/*genetics, DNA adducts, DNA Breaks, Dose-Response Relationship, Drug, Hep G2 Cells, Histones/metabolism, Humans, Micronuclei, Micronucleus Tests, Mitotic Index, Molecular Sequence Data, Mutagens/*toxicity, Phosphorylation, Real-Time Polymerase Chain Reaction, Tumor Suppressor Protein p53/metabolism, Western
@article{gabelova_genotoxicity_2011,
title = {Genotoxicity of 7H-dibenzo[c,g]carbazole and its tissue-specific derivatives in human hepatoma HepG2 cells is related to CYP1A1/1A2 expression.},
author = {Alena Gábelová and Zuzana Valovičová and Monika Mesárošová and Lenka Trilecová and Eva Hrubá and Soňa Marvanová and Pavel Krčmár and Alena Milcová and Jana Schmuczerová and Jan Vondráček and Miroslav Machala and Jan Topinka},
doi = {10.1002/em.20664},
issn = {1098-2280 0893-6692},
year = {2011},
date = {2011-10-01},
journal = {Environmental and molecular mutagenesis},
volume = {52},
number = {8},
pages = {636–645},
abstract = {The goal of this study was to investigate the genotoxicity of 7H-dibenzo[c,g]carbazole (DBC), a ubiquitous environmental pollutant, and its methyl derivatives, 5,9-dimethylDBC (DiMeDBC), a strict hepatocarcinogen, and N-methylDBC (N-MeDBC), a specific sarcomagen in human hepatoma HepG2 cells, and to infer potential mechanisms underlying the biological activity of particular carcinogen. All dibenzocarbazoles, regardless the tissue specificity, induced significant DNA strand break levels and micronuclei in HepG2 cells; though a mitotic spindle dysfunction rather than a chromosome breakage was implicated in N-MeDBC-mediated micronucleus formation. While DBC and N-MeDBC produced stable DNA adducts followed with p53 protein phosphorylation at Ser-15, DiMeDBC failed. A significant increase in DNA strand breaks following incubation of exposed cells with a repair-specific endonuclease (Fpg protein) suggested that either oxidative DNA damage or unstable DNA-adducts might underlie DiMeDBC genotoxicity in human hepatoma cells. DiMeDBC and N-MeDBC increased substantially also the amount of CYP1A1/2 expression in HepG2 cells. Pretreatment of cells with substances affecting AhR-mediated CYP1A family of enzymes expression; however, diminished DiMeDBC and N-MeDBC genotoxicity. Our data clearly demonstrated differences in the mechanisms involved in the biological activity of DiMeDBC and N-MeDBC in human hepatoma cells; the genotoxicity of these DBC derivatives is closely related to CYP1A1/2 expression.},
note = {Place: United States},
keywords = {Base Sequence, Blotting, Carbazoles/*toxicity, Cell Survival/drug effects, Chromosome-Defective/chemically induced/statistics & numerical data, Comet assay, Cytochrome P-450 CYP1A1/*genetics, Cytochrome P-450 CYP1A2/*genetics, DNA adducts, DNA Breaks, Dose-Response Relationship, Drug, Hep G2 Cells, Histones/metabolism, Humans, Micronuclei, Micronucleus Tests, Mitotic Index, Molecular Sequence Data, Mutagens/*toxicity, Phosphorylation, Real-Time Polymerase Chain Reaction, Tumor Suppressor Protein p53/metabolism, Western},
pubstate = {published},
tppubtype = {article}
}
Andrysík, Zdeněk; Vondráček, Jan; Marvanová, Soňa; Ciganek, Miroslav; Neča, Jiří; Pěnčíková, Kateřina; Mahadevan, Brinda; Topinka, Jan; Baird, William M.; Kozubík, Alois; Machala, Miroslav
In: Mutation research, vol. 714, no. 1-2, pp. 53–62, 2011, ISSN: 0027-5107, (Place: Netherlands).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/metabolism, DNA Adducts/drug effects, DNA Damage/*drug effects, Dose-Response Relationship, Drug, Genes, Liver/drug effects, Mutagens/*toxicity, Organic Chemicals/*toxicity, p53/drug effects, Particulate Matter/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors
@article{andrysik_activation_2011,
title = {Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons.},
author = {Zdeněk Andrysík and Jan Vondráček and Soňa Marvanová and Miroslav Ciganek and Jiří Neča and Kateřina Pěnčíková and Brinda Mahadevan and Jan Topinka and William M. Baird and Alois Kozubík and Miroslav Machala},
doi = {10.1016/j.mrfmmm.2011.06.011},
issn = {0027-5107},
year = {2011},
date = {2011-09-01},
journal = {Mutation research},
volume = {714},
number = {1-2},
pages = {53–62},
abstract = {Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction of the AhR-mediated transcription, such as cytochrome P450 1A1/1B1 expression, and the AhR-dependent cell proliferation. Importantly, these toxic events occurred at doses one order of magnitude lower than DNA damage. The AhR-mediated activity of the neutral fraction was linked to PAHs and their derivatives, as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls were only minor contributors to the overall AhR-mediated activity. Taken together, our data suggest that more attention should be paid to the AhR-dependent nongenotoxic events elicited by urban PM constituents, especially PAHs and their derivatives.},
note = {Place: Netherlands},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 CYP1A1/metabolism, DNA Adducts/drug effects, DNA Damage/*drug effects, Dose-Response Relationship, Drug, Genes, Liver/drug effects, Mutagens/*toxicity, Organic Chemicals/*toxicity, p53/drug effects, Particulate Matter/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors},
pubstate = {published},
tppubtype = {article}
}
Procházková, Jiřina; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
In: Toxicology, vol. 279, no. 1-3, pp. 146–154, 2011, ISSN: 1879-3185 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*drug effects/metabolism, Carcinoma, Cell Cycle/drug effects, Cell Nucleus/metabolism, Cell Proliferation/drug effects, Cells, Chromatin Immunoprecipitation, Cultured, Dose-Response Relationship, Drug, Gene Expression Regulation/*drug effects, Hepatocellular/pathology, Indoles/administration & dosage/metabolism/pharmacology, Liver Neoplasms/pathology, Liver/cytology/drug effects/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Protein Transport, Rats, Receptors, Signal Transduction/drug effects, Stem Cells/drug effects/metabolism
@article{prochazkova_differential_2011,
title = {Differential effects of indirubin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on the aryl hydrocarbon receptor (AhR) signalling in liver progenitor cells.},
author = {Jiřina Procházková and Alois Kozubík and Miroslav Machala and Jan Vondráček},
doi = {10.1016/j.tox.2010.10.003},
issn = {1879-3185 0300-483X},
year = {2011},
date = {2011-01-01},
journal = {Toxicology},
volume = {279},
number = {1-3},
pages = {146–154},
abstract = {In the present study, we investigated the effects of potential endogenous ligand indirubin on the aryl hydrocarbon receptor (AhR) signalling, with a focus on the AhR-dependent gene expression and cell cycle progression in rat liver progenitor cells, and compared them with the effects of a model toxic AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The low (picomolar and nanomolar) doses of indirubin, corresponding to expected endogenous levels, induced a transient translocation of AhR to the nucleus, while high (micromolar) doses induced a long-term AhR nuclear translocation, followed by its degradation, similar to the effects of TCDD. Whereas high doses of indirubin recruited AhR/ARNT1 dimer to rat Cyp1a1 promoter, the low doses did not induce its DNA binding, as revealed by the chromatin immunoprecipitation assay. This corresponded with the fact that the micromolar doses of indirubin significantly increased Cyp1a1/1b1 mRNA in a way similar to TCDD, while the low doses of indirubin were only poor inducers of Cyp1a1/1b1 expression. Comparable patterns of expression were observed also for other AhR gene targets, such as Nqo1 and Nrf2. Also, only micromolar doses of indirubin were able to mimic the effects of TCDD on cell cycle and proliferation of liver progenitor cells or hepatoma cells. Nevertheless, indirubin at low concentrations may have unique effects on gene expression in non-tumorigenic cells. Although both TCDD and the high doses of indirubin repressed plakoglobin (Jup) expression, the picomolar doses of indirubin, unlike the equimolar doses of TCDD, increased mRNA levels of this important desmosomal and adherens junctions constituent. These present data suggest that the outcome of AhR activation induced by indirubin at concentrations expected in vivo may differ from the AhR signalling triggered by exogenous toxic ligands, such as TCDD.},
note = {Place: Ireland},
keywords = {Animals, Aryl Hydrocarbon/*drug effects/metabolism, Carcinoma, Cell Cycle/drug effects, Cell Nucleus/metabolism, Cell Proliferation/drug effects, Cells, Chromatin Immunoprecipitation, Cultured, Dose-Response Relationship, Drug, Gene Expression Regulation/*drug effects, Hepatocellular/pathology, Indoles/administration & dosage/metabolism/pharmacology, Liver Neoplasms/pathology, Liver/cytology/drug effects/metabolism, Polychlorinated Dibenzodioxins/*toxicity, Protein Transport, Rats, Receptors, Signal Transduction/drug effects, Stem Cells/drug effects/metabolism},
pubstate = {published},
tppubtype = {article}
}
2010
Svihálková-Sindlerová, Lenka; Foltinová, Vendula; Vaculová, Alena; Horváth, Viktor; Soucek, Karel; Sova, Petr; Hofmanová, Jirina; Kozubík, Alois
LA-12 overcomes confluence-dependent resistance of HT-29 colon cancer cells to Pt (II) compounds. Journal Article
In: Anticancer research, vol. 30, no. 4, pp. 1183–1188, 2010, ISSN: 1791-7530 0250-7005, (Place: Greece).
Abstract | BibTeX | Tags: Adenocarcinoma/*drug therapy, Amantadine/*analogs & derivatives/pharmacology, Antineoplastic Agents/*pharmacology, Apoptosis/drug effects, Cell Adhesion/drug effects, Cisplatin/pharmacology, Colonic Neoplasms/*drug therapy/pathology, Dose-Response Relationship, Drug, Drug resistance, HT29 Cells, Humans, Neoplasm, Organoplatinum Compounds/*pharmacology, Oxaliplatin
@article{svihalkova-sindlerova_-12_2010,
title = {LA-12 overcomes confluence-dependent resistance of HT-29 colon cancer cells to Pt (II) compounds.},
author = {Lenka Svihálková-Sindlerová and Vendula Foltinová and Alena Vaculová and Viktor Horváth and Karel Soucek and Petr Sova and Jirina Hofmanová and Alois Kozubík},
issn = {1791-7530 0250-7005},
year = {2010},
date = {2010-04-01},
journal = {Anticancer research},
volume = {30},
number = {4},
pages = {1183–1188},
abstract = {BACKGROUND: LA-12 is a new platinum (IV) drug with promising cytotoxic effects in a wide range of cancer cell lines. Its confluence-dependent effects were compared with cisplatin (CDDP) and oxaliplatin (L-OHP) in HT-29 cells. MATERIALS AND METHODS: Cytotoxicity was determined by MTT test, eosin exclusion assay, and cell number quantification. The cell cycle was analysed using propidium iodide DNA staining (flow cytometry), apoptosis by phosphatidylserine externalisation (annexin-V assay), mitochondrial membrane potential by flow cytometry, nuclear morphology by means of fluorescence microscopy, and PARP cleavage by Western blotting. RESULTS: While L-OHP and CDDP were practically inactive in the subconfluent cell population, LA-12 showed a similar toxicity in both subconfluent and growing populations. All compounds induced apoptosis, although with different potentials. CONCLUSION: LA-12 was able to overcome confluence-dependent resistance of HT-29 cells observed for other platinum compounds, which may have potential therapeutic use in slowly growing tumours.},
note = {Place: Greece},
keywords = {Adenocarcinoma/*drug therapy, Amantadine/*analogs & derivatives/pharmacology, Antineoplastic Agents/*pharmacology, Apoptosis/drug effects, Cell Adhesion/drug effects, Cisplatin/pharmacology, Colonic Neoplasms/*drug therapy/pathology, Dose-Response Relationship, Drug, Drug resistance, HT29 Cells, Humans, Neoplasm, Organoplatinum Compounds/*pharmacology, Oxaliplatin},
pubstate = {published},
tppubtype = {article}
}
2009
Vanhara, Petr; Lincová, Eva; Kozubík, Alois; Jurdic, Pierre; Soucek, Karel; Smarda, Jan
Growth/differentiation factor-15 inhibits differentiation into osteoclasts–a novel factor involved in control of osteoclast differentiation. Journal Article
In: Differentiation; research in biological diversity, vol. 78, no. 4, pp. 213–222, 2009, ISSN: 1432-0436 0301-4681, (Place: England).
Abstract | Links | BibTeX | Tags: Acid Phosphatase/metabolism, Animals, Calcitriol/pharmacology, Carbonic Anhydrase II/antagonists & inhibitors, Cathepsin K/antagonists & inhibitors/genetics, Cell Differentiation/*drug effects, Cell Line, Conditioned/pharmacology, Culture Media, Dose-Response Relationship, Drug, Femur/cytology, Growth Differentiation Factor 15/*pharmacology, Humans, Inbred Strains, Isoenzymes/metabolism, Macrophage Colony-Stimulating Factor/pharmacology, Macrophages/cytology, Male, Mice, NF-kappa B/antagonists & inhibitors, Osteoclasts/*drug effects/metabolism, Prostatic Neoplasms/metabolism, Proto-Oncogene Proteins c-fos/antagonists & inhibitors, RANK Ligand/pharmacology, Tartrate-Resistant Acid Phosphatase, Time Factors, Tumor
@article{vanhara_growthdifferentiation_2009,
title = {Growth/differentiation factor-15 inhibits differentiation into osteoclasts–a novel factor involved in control of osteoclast differentiation.},
author = {Petr Vanhara and Eva Lincová and Alois Kozubík and Pierre Jurdic and Karel Soucek and Jan Smarda},
doi = {10.1016/j.diff.2009.07.008},
issn = {1432-0436 0301-4681},
year = {2009},
date = {2009-11-01},
journal = {Differentiation; research in biological diversity},
volume = {78},
number = {4},
pages = {213–222},
abstract = {Survival and capability of cancer cells to form metastases fundamentally depend on interactions with their microenvironment. Secondary tumors originating from prostate carcinomas affect remodeling of bone tissue and can induce both osteolytic and osteocondensing lesions. However, particular molecular mechanisms responsible for selective homing and activity of cancer cells in bone microenvironment have not been clarified yet. Growth/differentiation factor-15 (GDF-15), a distant member of the TGF-beta protein family, has recently been associated with many human cancers, including prostate. We show that both pure GDF-15 and the GDF-15-containing growth medium of 1,25(OH)(2)-vitamin D(3)-treated prostate adenocarcinoma LNCaP cells suppress formation of mature osteoclasts differentiated from RAW264.7 macrophages and bone-marrow precursors by M-CSF/RANKL in a dose-dependent manner. GDF-15 inhibits expression of c-Fos and activity of NFkappaB by delayed degradation of IkappaB. Moreover, GDF-15 inhibits expression of carbonic anhydrase II and cathepsin K, key osteoclast enzymes, and induces changes in SMAD and p38 signaling. The lack of functional osteoclasts can contribute to accumulation of bone matrix by reduction of bone resorption. These results unveil new role of GDF-15 in modulation of osteoclast differentiation and possibly in therapy of bone metastases.},
note = {Place: England},
keywords = {Acid Phosphatase/metabolism, Animals, Calcitriol/pharmacology, Carbonic Anhydrase II/antagonists & inhibitors, Cathepsin K/antagonists & inhibitors/genetics, Cell Differentiation/*drug effects, Cell Line, Conditioned/pharmacology, Culture Media, Dose-Response Relationship, Drug, Femur/cytology, Growth Differentiation Factor 15/*pharmacology, Humans, Inbred Strains, Isoenzymes/metabolism, Macrophage Colony-Stimulating Factor/pharmacology, Macrophages/cytology, Male, Mice, NF-kappa B/antagonists & inhibitors, Osteoclasts/*drug effects/metabolism, Prostatic Neoplasms/metabolism, Proto-Oncogene Proteins c-fos/antagonists & inhibitors, RANK Ligand/pharmacology, Tartrate-Resistant Acid Phosphatase, Time Factors, Tumor},
pubstate = {published},
tppubtype = {article}
}
2008
Gavelová, Martina; Hladíková, Jana; Vildová, Lenka; Novotná, Romana; Vondrácek, Jan; Krcmár, Pavel; Machala, Miroslav; Skálová, Lenka
Reduction of doxorubicin and oracin and induction of carbonyl reductase in human breast carcinoma MCF-7 cells. Journal Article
In: Chemico-biological interactions, vol. 176, no. 1, pp. 9–18, 2008, ISSN: 0009-2797, (Place: Ireland).
Abstract | Links | BibTeX | Tags: 3-Hydroxysteroid Dehydrogenases/antagonists & inhibitors/genetics/metabolism, Alcohol Oxidoreductases/antagonists & inhibitors/*biosynthesis/genetics/metabolism, Aldehyde Reductase, Aldo-Keto Reductase Family 1 Member C3, Aldo-Keto Reductases, Biotransformation/drug effects, Blotting, Breast Neoplasms/*enzymology/genetics, Cell Line, Dose-Response Relationship, Doxorubicin/analogs & derivatives/chemistry/*metabolism/pharmacology, Drug, Enzyme Induction/drug effects, Enzyme Inhibitors/pharmacology, Ethanolamines/chemistry/*metabolism/pharmacology, Gene Expression Regulation, Humans, Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors/genetics/metabolism, Isoquinolines/chemistry/*metabolism/pharmacology, Kinetics, Messenger/genetics/metabolism, Methacrylates/pharmacology, Neoplastic/drug effects, Oxidation-Reduction/drug effects, Phenylpropionates/pharmacology, Quercetin/analogs & derivatives/pharmacology, RNA, Subcellular Fractions/drug effects/metabolism, Tumor, Western
@article{gavelova_reduction_2008,
title = {Reduction of doxorubicin and oracin and induction of carbonyl reductase in human breast carcinoma MCF-7 cells.},
author = {Martina Gavelová and Jana Hladíková and Lenka Vildová and Romana Novotná and Jan Vondrácek and Pavel Krcmár and Miroslav Machala and Lenka Skálová},
doi = {10.1016/j.cbi.2008.07.011},
issn = {0009-2797},
year = {2008},
date = {2008-10-01},
journal = {Chemico-biological interactions},
volume = {176},
number = {1},
pages = {9–18},
abstract = {In cancer cells, the drug-metabolizing enzymes may deactivate cytostatics, thus contributing to their survival. Moreover, the induction of these enzymes may also contribute to development of drug-resistance through acceleration of cytostatics deactivation. However, the principal metabolic pathways contributing to deactivation of many cytostatics still remain poorly defined. The main aims of the present study were: (i) to compare the reductive deactivation of cytostatic drugs doxorubicin (DOX) and oracin (ORC) in human breast cancer MCF-7 cells; (ii) to identify major enzyme(s) involved in the carbonyl reduction; and iii) to evaluate the activities and expression of selected carbonyl reducing enzymes in MCF-7 cells upon a short-term (48 h) exposure to either DOX or ORC. We found that MCF-7 cells were able to effectively metabolize both DOX and ORC through reduction of their carbonyl groups. The reduction of ORC was stereospecific, with a preferential formation of + enantiomer of dihydrooracin (DHO). The cytosolic carbonyl reductase CBR1 seemed to be a principal enzyme reducing both drugs, while cytosolic aldo-keto reductase AKR1C3 or microsomal reductases probably did not play important role in metabolism of either DOX or ORC. The exposure of MCF-7 cells to low (nanomolar) concentrations of DOX or ORC caused a significant elevation of reduction rates of both cytostatics, accompanied with an increase of CBR1 protein levels. Taken together, the present results seem to suggest that the accelerated metabolic deactivation of ORC or DOX might contribute to the survival of breast cancer cells during exposure to these cytostatics.},
note = {Place: Ireland},
keywords = {3-Hydroxysteroid Dehydrogenases/antagonists & inhibitors/genetics/metabolism, Alcohol Oxidoreductases/antagonists & inhibitors/*biosynthesis/genetics/metabolism, Aldehyde Reductase, Aldo-Keto Reductase Family 1 Member C3, Aldo-Keto Reductases, Biotransformation/drug effects, Blotting, Breast Neoplasms/*enzymology/genetics, Cell Line, Dose-Response Relationship, Doxorubicin/analogs & derivatives/chemistry/*metabolism/pharmacology, Drug, Enzyme Induction/drug effects, Enzyme Inhibitors/pharmacology, Ethanolamines/chemistry/*metabolism/pharmacology, Gene Expression Regulation, Humans, Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors/genetics/metabolism, Isoquinolines/chemistry/*metabolism/pharmacology, Kinetics, Messenger/genetics/metabolism, Methacrylates/pharmacology, Neoplastic/drug effects, Oxidation-Reduction/drug effects, Phenylpropionates/pharmacology, Quercetin/analogs & derivatives/pharmacology, RNA, Subcellular Fractions/drug effects/metabolism, Tumor, Western},
pubstate = {published},
tppubtype = {article}
}
Marvanová, Sona; Vondrácek, Jan; Penccíková, Katerrina; Trilecová, Lenka; Krcmárr, Pavel; Topinka, Jan; Nováková, Zuzana; Milcová, Alena; Machala, Miroslav
Toxic effects of methylated benz[a]anthracenes in liver cells. Journal Article
In: Chemical research in toxicology, vol. 21, no. 2, pp. 503–512, 2008, ISSN: 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: 10-Dimethyl-1, 2-benzanthracene/chemistry/metabolism/toxicity, 9, Animals, Apoptosis/drug effects, Benz(a)Anthracenes/chemistry/metabolism/*toxicity, Carcinoma, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 Enzyme System/genetics/metabolism, DNA Adducts/analysis/metabolism, DNA/drug effects/metabolism, Dose-Response Relationship, Drug, Enzyme Induction, Enzymologic/drug effects, Gap Junctions/drug effects, Gene Expression Regulation, Genes, Hepatocellular, Hepatocytes/*drug effects/metabolism/pathology, Inbred F344, Liver Neoplasms, Messenger/metabolism, Methylation, Rats, Reporter/drug effects, RNA, Stem Cells/*drug effects/metabolism/pathology, Tumor
@article{marvanova_toxic_2008,
title = {Toxic effects of methylated benz[a]anthracenes in liver cells.},
author = {Sona Marvanová and Jan Vondrácek and Katerrina Penccíková and Lenka Trilecová and Pavel Krcmárr and Jan Topinka and Zuzana Nováková and Alena Milcová and Miroslav Machala},
doi = {10.1021/tx700305x},
issn = {0893-228X},
year = {2008},
date = {2008-02-01},
journal = {Chemical research in toxicology},
volume = {21},
number = {2},
pages = {503–512},
abstract = {Monomethylated benz[ a]anthracenes (MeBaAs) are an important group of methylated derivatives of polycyclic aromatic hydrocarbons (PAHs). Although the methyl substitution reportedly affects their mutagenicity and tumor-initiating activity, little is known about the impact of methylation on the effects associated with activation of the aryl hydrocarbon receptor (AhR)-dependent gene expression and/or toxic events associated with tumor promotion. In the present study, we studied the effects of a series of MeBaAs on the above-mentioned end points in rat liver cell lines and compared them with the effects of benz[ a]anthracene (BaA) and the potent carcinogen 7,12-dimethylbenz[ a]anthracene (DMBA). Methyl substitution enhanced the AhR-mediated activity of BaA derivatives determined in a reporter gene assay, as the induction equivalency factors (IEFs) of all MeBaAs were higher than that of BaA. IEFs of 6-MeBaA and 9-MeBaA, two of the most potent MeBaAs, were more than two orders of magnitude higher than the IEF of BaA. Correspondingly, all MeBaAs induced higher levels of cytochrome P450 1A1 mRNA. Both BaA and MeBaAs had similar effects on the expression of cytochrome P450 1B1 or aldo-keto reductase 1C9 in rat liver epithelial WB-F344 cells. In contrast to genotoxic DMBA, MeBaAs induced low DNA adduct formation. Only 10-MeBaA induced apoptosis and accumulation of phosphorylated p53, which could be associated with the induction of oxidative stress, similar to DMBA. With the exception of 10-MeBaA, all MeBaAs induced cell proliferation in contact-inhibited WB-F344 cells, which corresponded with their ability to activate AhR. 1-, 2-, 8-, 10-, 11-, and 12-MeBaA inhibited gap junctional intercellular communication (GJIC) in WB-F344 cells. This mode of action, like disruption of cell proliferation control, might contribute to tumor promotion. Taken together, these data showed that the methyl substitution significantly influences those effects of MeBaAs associated with AhR activation or GJIC inhibition.},
note = {Place: United States},
keywords = {10-Dimethyl-1, 2-benzanthracene/chemistry/metabolism/toxicity, 9, Animals, Apoptosis/drug effects, Benz(a)Anthracenes/chemistry/metabolism/*toxicity, Carcinoma, Cell Line, Cell Proliferation/drug effects, Cytochrome P-450 Enzyme System/genetics/metabolism, DNA Adducts/analysis/metabolism, DNA/drug effects/metabolism, Dose-Response Relationship, Drug, Enzyme Induction, Enzymologic/drug effects, Gap Junctions/drug effects, Gene Expression Regulation, Genes, Hepatocellular, Hepatocytes/*drug effects/metabolism/pathology, Inbred F344, Liver Neoplasms, Messenger/metabolism, Methylation, Rats, Reporter/drug effects, RNA, Stem Cells/*drug effects/metabolism/pathology, Tumor},
pubstate = {published},
tppubtype = {article}
}
2007
Vondrácek, Jan; Svihálková-Sindlerová, Lenka; Pencíková, Katerina; Marvanová, Sona; Krcmár, Pavel; Ciganek, Miroslav; Neca, Jirí; Trosko, James E.; Upham, Brad; Kozubík, Alois; Machala, Miroslav
In: Environmental toxicology and chemistry, vol. 26, no. 11, pp. 2308–2316, 2007, ISSN: 0730-7268, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Anthracenes/toxicity, Aryl Hydrocarbon/metabolism, Carcinogens/*toxicity, Cell Line, Cell Proliferation/*drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Czech Republic, Dose-Response Relationship, Drug, Environmental Pollutants/*toxicity, Gap Junctions/*drug effects/metabolism, Gene Expression Regulation/*drug effects/physiology, Geologic Sediments/*chemistry, Liver/cytology/pathology, Methylation, Naphthalenes/toxicity, Phenanthrenes/toxicity, Rats, Receptors, Rivers/*chemistry, Tumor, Tumor Suppressor Protein p53/metabolism
@article{vondracek_concentrations_2007,
title = {Concentrations of methylated naphthalenes, anthracenes, and phenanthrenes occurring in Czech river sediments and their effects on toxic events associated with carcinogenesis in rat liver cell lines.},
author = {Jan Vondrácek and Lenka Svihálková-Sindlerová and Katerina Pencíková and Sona Marvanová and Pavel Krcmár and Miroslav Ciganek and Jirí Neca and James E. Trosko and Brad Upham and Alois Kozubík and Miroslav Machala},
doi = {10.1897/07-161R.1},
issn = {0730-7268},
year = {2007},
date = {2007-11-01},
journal = {Environmental toxicology and chemistry},
volume = {26},
number = {11},
pages = {2308–2316},
abstract = {Alkylated polycyclic aromatic hydrocarbons (PAHs) are important environmental pollutants. In the present study, we determined levels of monomethylated naphthalenes (MeNap), phenanthrenes (MePhe), and anthracenes (MeAnt) in Czech river sediments. The levels of MePhe generally were lower than the concentrations of phenanthrene. In contrast, both MeNap and MeAnt were found at levels higher than their respective parent compounds in the majority of sampling sites. We then investigated their aryl hydrocarbon receptor (AhR)-mediated activity, accumulation of phosphorylated p53 protein, induction of expression of cytochrome P450 1A1 (CYP1A1), inhibition of gap junctional intercellular communication (GJIC), and effects on cell proliferation in rat liver cell models to evaluate the relative importance of these toxicity mechanisms of low-molecular-weight methylated PAHs. Methylated phenanthrene and anthracene compounds were weak inducers of AhR-mediated activity as determined both in a reporter gene assay system and by detection of the endogenous gene (Cyp1a1) induction. 2-Methylphenanthrene was the most potent AhR ligand. Contribution of MeAnt and MePhe to overall AhR-inducing potencies should be taken into account in PAH-contaminated environments. Nevertheless, their effects on AhR were not sufficient to modulate cell proliferation in a normal rat liver progenitor cell model system. These PAHs only had a marginal effect on p53 phosphorylation at high doses of 1-, 3-, and 9-MePhe as well as 1 MeAnt. On the other hand, both 2- and 9-MeAnt as well as all the MePhe under study were efficient inhibitors of GJIC, suggesting that these compounds might act as tumor promoters. In summary, inhibition of GJIC and partial activation of AhR seem to be the most prominent toxic effects of the methylated PAHs in the present study.},
note = {Place: United States},
keywords = {Animals, Anthracenes/toxicity, Aryl Hydrocarbon/metabolism, Carcinogens/*toxicity, Cell Line, Cell Proliferation/*drug effects, Cytochrome P-450 CYP1A1/genetics/metabolism, Czech Republic, Dose-Response Relationship, Drug, Environmental Pollutants/*toxicity, Gap Junctions/*drug effects/metabolism, Gene Expression Regulation/*drug effects/physiology, Geologic Sediments/*chemistry, Liver/cytology/pathology, Methylation, Naphthalenes/toxicity, Phenanthrenes/toxicity, Rats, Receptors, Rivers/*chemistry, Tumor, Tumor Suppressor Protein p53/metabolism},
pubstate = {published},
tppubtype = {article}
}
Umannová, Lenka; Zatloukalová, Jirina; Machala, Miroslav; Krcmár, Pavel; Májková, Zuzana; Hennig, Bernhard; Kozubík, Alois; Vondrácek, Jan
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 99, no. 1, pp. 79–89, 2007, ISSN: 1096-6080 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon Hydroxylases/genetics/*metabolism, Aryl Hydrocarbon/*drug effects/metabolism, Carcinogens/metabolism/toxicity, Cell Proliferation/drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, Dose-Response Relationship, Drug, Drug Combinations, Drug Interactions, Enzymologic/*drug effects, Epithelial Cells/drug effects/enzymology, Gene Expression Regulation, Inbred F344, Ligands, Liver/cytology, Polychlorinated Biphenyls/metabolism/*toxicity, Polychlorinated Dibenzodioxins/metabolism/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology, Tumor Necrosis Factor-alpha/*pharmacology
@article{umannova_tumor_2007,
title = {Tumor necrosis factor-alpha modulates effects of aryl hydrocarbon receptor ligands on cell proliferation and expression of cytochrome P450 enzymes in rat liver "stem-like" cells.},
author = {Lenka Umannová and Jirina Zatloukalová and Miroslav Machala and Pavel Krcmár and Zuzana Májková and Bernhard Hennig and Alois Kozubík and Jan Vondrácek},
doi = {10.1093/toxsci/kfm149},
issn = {1096-6080 1096-0929},
year = {2007},
date = {2007-09-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {99},
number = {1},
pages = {79–89},
abstract = {Various liver diseases lead to an extensive inflammatory response and release of a number of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). This cytokine is known to play a major role in liver regeneration as well as in carcinogenesis. We investigated possible interactions of TNF-alpha with ligands of the aryl hydrocarbon receptor (AhR) and known liver carcinogens, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and coplanar 3,3',4,4',5-pentachlorobiphenyl (PCB 126). These compounds have been previously found to disrupt cell cycle control in contact-inhibited rat liver WB-F344 cells, an in vitro model of adult liver progenitor cells. TNF-alpha itself had no significant effect on the proliferation/apoptosis ratio in the WB-F344 cell line. However, it significantly potentiated proliferative effects of low picomolar range doses of both TCDD and PCB 126, leading to an increase in cell numbers, as well as an increased percentage of cells entering the S-phase of the cell cycle. The combination of TNF-alpha with low concentrations of AhR ligands increased both messenger RNA (mRNA) and protein levels of cyclin A, a principle cyclin involved in disruption of contact inhibition. TNF-alpha temporarily inhibited AhR-dependent induction of cytochrome P450 1A1 (CYP1A1). In contrast, TNF-alpha significantly enhanced induction of CYP1B1 at both mRNA and protein levels, by a mechanism, which was independent of nuclear factor-kappaB activation. These results suggest that TNF-alpha can significantly amplify effects of AhR ligands on deregulation of cell proliferation control, as well as on expression of CYP1B1, which is involved in metabolic activation of a number of mutagenic compounds.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon Hydroxylases/genetics/*metabolism, Aryl Hydrocarbon/*drug effects/metabolism, Carcinogens/metabolism/toxicity, Cell Proliferation/drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/genetics/metabolism, Cytochrome P-450 CYP1B1, Dose-Response Relationship, Drug, Drug Combinations, Drug Interactions, Enzymologic/*drug effects, Epithelial Cells/drug effects/enzymology, Gene Expression Regulation, Inbred F344, Ligands, Liver/cytology, Polychlorinated Biphenyls/metabolism/*toxicity, Polychlorinated Dibenzodioxins/metabolism/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology, Tumor Necrosis Factor-alpha/*pharmacology},
pubstate = {published},
tppubtype = {article}
}
2005
Plísková, Martina; Vondrácek, Jan; Kren, Vladimír; Gazák, Radek; Sedmera, Petr; Walterová, Daniela; Psotová, Jitka; Simánek, Vilím; Machala, Miroslav
Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Journal Article
In: Toxicology, vol. 215, no. 1-2, pp. 80–89, 2005, ISSN: 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Drug, Estrogen/*metabolism, Humans, Luciferases/biosynthesis/genetics, Molecular Structure, Rats, Receptors, Silybin, Silymarin/chemistry/pharmacology, Stereoisomerism, Tumor
@article{pliskova_effects_2005,
title = {Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation.},
author = {Martina Plísková and Jan Vondrácek and Vladimír Kren and Radek Gazák and Petr Sedmera and Daniela Walterová and Jitka Psotová and Vilím Simánek and Miroslav Machala},
doi = {10.1016/j.tox.2005.06.020},
issn = {0300-483X},
year = {2005},
date = {2005-11-01},
journal = {Toxicology},
volume = {215},
number = {1-2},
pages = {80–89},
abstract = {Silymarin, a standardized mixture of flavonolignans, or its major constituents could be effective for prevention and treatment of hepatic damage or skin cancer. However, their potential side effects, such as modulation of endocrine functions via the disruption of estrogen receptor (ER) and/or aryl hydrocarbon receptor (AhR) activation, are largely unknown. In the present study, we investigated impact of silymarin, its constituents and a series of their synthetic derivatives on ER- and AhR-mediated activities using in vitro reporter gene assays. We found that none of the compounds under study affected the AhR-mediated activity in rat hepatoma cells. Contrary to that, several compounds behaved as either partial or full ER agonists. Silymarin elicited partial ER activation, with silybin B being probably responsible for a majority of the weak ER-mediated activity of silymarin; silybin A and other flavonolignans were found to be inactive and potent ER agonist taxifolin is only a minor constituent of silymarin. To our knowledge, this is probably the first time, when receptor-specific in vitro effects of separated diastereomers have been demonstrated. In contrast to silymarin constituents, the synthetic silybin derivatives, potentially useful as chemoprotective agents, did not modulate the ER-mediated activity, with exception of 23-O-pivaloylsilybin. Interestingly, 7-O-benzylsilybin potentiated ER-mediated activity of 17beta-estradiol despite possessing no estrogenic activity. In conclusion, our data suggest that estrogenicity of some silymarin constituents should be taken in account as their potential side effect when considered as chemopreventive compounds. These results also stress the need to study biological activities of purified or synthesized diastereomers of silybin derivatives.},
note = {Place: Ireland},
keywords = {Animals, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Drug, Estrogen/*metabolism, Humans, Luciferases/biosynthesis/genetics, Molecular Structure, Rats, Receptors, Silybin, Silymarin/chemistry/pharmacology, Stereoisomerism, Tumor},
pubstate = {published},
tppubtype = {article}
}
Forejtníková, Hana; Lunerová, Kamila; Kubínová, Renata; Jankovská, Dagmar; Marek, Radek; Kares, Radovan; Suchý, Václav; Vondrácek, Jan; Machala, Miroslav
Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro. Journal Article
In: Toxicology, vol. 208, no. 1, pp. 81–93, 2005, ISSN: 0300-483X, (Place: Ireland).
Abstract | Links | BibTeX | Tags: Animals, Carcinogens/metabolism/*toxicity, Cell Communication/drug effects/physiology, Cell Line, Chalcones/*pharmacology/*toxicity, Cytochrome P-450 Enzyme Inhibitors, Cytochrome P-450 Enzyme System/*metabolism, Dose-Response Relationship, Drug, Epithelial Cells/drug effects/metabolism, Gap Junctions/drug effects/metabolism/physiology, In Vitro Techniques, Lipid Peroxidation/drug effects, Liver/drug effects/enzymology, Liver/drug effects/ultrastructure, Male, Microsomes, Rats, Structure-Activity Relationship, Wistar
@article{forejtnikova_chemoprotective_2005,
title = {Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro.},
author = {Hana Forejtníková and Kamila Lunerová and Renata Kubínová and Dagmar Jankovská and Radek Marek and Radovan Kares and Václav Suchý and Jan Vondrácek and Miroslav Machala},
doi = {10.1016/j.tox.2004.11.011},
issn = {0300-483X},
year = {2005},
date = {2005-03-01},
journal = {Toxicology},
volume = {208},
number = {1},
pages = {81–93},
abstract = {Cytochrome P4501A activity, oxidative stress and inhibition of gap junctional intercellular communication (GJIC) are involved in metabolic activation of promutagens and tumor-promoting activity of various xenobiotics, and their prevention is considered to be an important characteristic of chemoprotective compounds. In this study, a series of 31 chalcones and their corresponding dihydroderivatives, substituted in 2,2'-, 3,3'-, 4- or 4'-position by hydroxyl or methoxy group, were tested for their ability to inhibit Fe(II)/NADPH-enhanced lipid peroxidation and cytochrome P4501A-dependent 7-cethoxyresorufin-O-deethylase (EROD) activity in rat hepatic microsomes. Effects of the compounds on GJIC were determined in rat liver epithelial WB-F344 cells. Most of the chalcones and dihydrochalcones inhibited EROD activity in a dose-dependent manner at the range 0.25-25 microM, which was comparable to model flavonoid inhibitors alpha-naphthoflavone and quercetin. The chalcones exhibited higher inhibition activity than the corresponding dihydroderivatives. Mono and dihydroxylated chalcones, and dihydrochalcones showed none or only a weak antioxidant activity; trihydroxyderivatives inhibited in vitro lipid peroxidation significantly only at 50 microM concentration. Potential adverse effects, namely inhibition of GJIC and/or cytotoxicity were detected after treatment of WB-F344 cells with a number of chalcone and dihydrochalcone derivatives, suggesting that they should be excluded from additional screening as chemoprotective compounds. Chalcones and dihydrochalcones substituted at 4- and/or 4'-position, which elicited no inhibition of GJIC, were further tested for the potential enhancing effects on GJIC. The present data seem to suggest that 4-hydroxy, 2',4'-dihydroxy-3-methoxy, 2,4,4'-trihydroxy, and 2',4,4'-trihydroxychalcone, 2',4-dihydroxy and 2'-hydroxy-3,4-dimethoxydihydrochalcone might be promising chemoprotective compounds against CYP1A activity, and partly also against oxidative damage without inducing adverse effects, such as GJIC inhibition. In general, determination of potencies of tested compounds to inhibit GJIC should be involved in any set of methods for the in vitro screening of chemoprotective characteristics of potential drugs, in order to reveal their potential adverse effects associated with tumor promotion.},
note = {Place: Ireland},
keywords = {Animals, Carcinogens/metabolism/*toxicity, Cell Communication/drug effects/physiology, Cell Line, Chalcones/*pharmacology/*toxicity, Cytochrome P-450 Enzyme Inhibitors, Cytochrome P-450 Enzyme System/*metabolism, Dose-Response Relationship, Drug, Epithelial Cells/drug effects/metabolism, Gap Junctions/drug effects/metabolism/physiology, In Vitro Techniques, Lipid Peroxidation/drug effects, Liver/drug effects/enzymology, Liver/drug effects/ultrastructure, Male, Microsomes, Rats, Structure-Activity Relationship, Wistar},
pubstate = {published},
tppubtype = {article}
}
Plísková, Martina; Vondrácek, Jan; Vojtesek, Borivoj; Kozubík, Alois; Machala, Miroslav
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 83, no. 2, pp. 246–256, 2005, ISSN: 1096-6080 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Benz(a)Anthracenes/*toxicity, Benzo(a)pyrene/*toxicity, Benzothiazoles, Breast Neoplasms/drug therapy/*genetics/metabolism, Bromodeoxyuridine/metabolism, Carcinogens/*toxicity, Carcinoma/drug therapy/*genetics/metabolism, Cell Cycle/drug effects, Cell Line, Cell Proliferation/*drug effects, Cell Survival/drug effects, DNA Replication/drug effects, Dose-Response Relationship, Drug, Drug Interactions, Epigenesis, Estradiol/*analogs & derivatives/pharmacology, Estrogen, Estrogen Antagonists/pharmacology, Female, Fulvestrant, Genetic, Humans, Receptors, Thiazoles/pharmacology, Toluene/*analogs & derivatives/pharmacology, Tumor, Tumor Suppressor Protein p53/antagonists & inhibitors/genetics/metabolism
@article{pliskova_deregulation_2005,
title = {Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events.},
author = {Martina Plísková and Jan Vondrácek and Borivoj Vojtesek and Alois Kozubík and Miroslav Machala},
doi = {10.1093/toxsci/kfi040},
issn = {1096-6080 1096-0929},
year = {2005},
date = {2005-02-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {83},
number = {2},
pages = {246–256},
abstract = {Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), are carcinogens suggested to be involved in development of human cancer. Several recent studies have reported that PAHs can activate estrogen receptors (ER), either directly or indirectly by producing estrogenic metabolites. We hypothesized that the activation of ER by PAHs or their metabolites could induce cell proliferation in estrogen-sensitive cells. In the present study, we found that two PAHs, benz[a]anthracene (BaA) and BaP, can stimulate proliferation of human breast carcinoma MCF-7 cells at concentrations 100 nM and higher. This effect was ER-dependent, because it was blocked by the pure antiestrogen ICI 182,780. Although both PAHs partially inhibited S-phase entry and DNA synthesis induced by 17beta-estradiol, they stimulated S-phase entry when applied to MCF-7 cells synchronized by serum deprivation. This was in contrast with model antiestrogenic aryl hydrocarbon receptor ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, which fully suppressed S-phase entry. BaP, which is a strong mutagen, was found to induce p53 tumor suppressor expression, a partial S-phase arrest and at higher concentrations also cell death. Pifithrin-alpha, a synthetic inhibitor of p53 activity, abolished both S-phase arrest and apoptosis induced by genotoxic PAHs, and it potentiated the proliferative effect of BaP. Thus, both genotoxic and nongenotoxic events seem to interact in the effects of BaP on cell proliferation. Taken together, our data indicate that both BaA and BaP can stimulate cell proliferation through activation of ER. The proliferative effects of these carcinogenic compounds might contribute to tumor promotion in estrogen-sensitive tissues.},
note = {Place: United States},
keywords = {Benz(a)Anthracenes/*toxicity, Benzo(a)pyrene/*toxicity, Benzothiazoles, Breast Neoplasms/drug therapy/*genetics/metabolism, Bromodeoxyuridine/metabolism, Carcinogens/*toxicity, Carcinoma/drug therapy/*genetics/metabolism, Cell Cycle/drug effects, Cell Line, Cell Proliferation/*drug effects, Cell Survival/drug effects, DNA Replication/drug effects, Dose-Response Relationship, Drug, Drug Interactions, Epigenesis, Estradiol/*analogs & derivatives/pharmacology, Estrogen, Estrogen Antagonists/pharmacology, Female, Fulvestrant, Genetic, Humans, Receptors, Thiazoles/pharmacology, Toluene/*analogs & derivatives/pharmacology, Tumor, Tumor Suppressor Protein p53/antagonists & inhibitors/genetics/metabolism},
pubstate = {published},
tppubtype = {article}
}
Vondrácek, Jan; Machala, Miroslav; Bryja, Vítezslav; Chramostová, Katerina; Krcmár, Pavel; Dietrich, Cornelia; Hampl, Ales; Kozubík, Alois
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 83, no. 1, pp. 53–63, 2005, ISSN: 1096-6080 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/*drug effects, Cyclin A/biosynthesis, Cyclin D2, Cyclin-Dependent Kinases/biosynthesis, Cyclins/biosynthesis, Dose-Response Relationship, Drug, Epithelial Cells/*drug effects/enzymology/metabolism, Hydroxylation, Liver/*cytology, Polychlorinated Biphenyls/metabolism/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology/metabolism, Up-Regulation
@article{vondracek_aryl_2005,
title = {Aryl hydrocarbon receptor-activating polychlorinated biphenyls and their hydroxylated metabolites induce cell proliferation in contact-inhibited rat liver epithelial cells.},
author = {Jan Vondrácek and Miroslav Machala and Vítezslav Bryja and Katerina Chramostová and Pavel Krcmár and Cornelia Dietrich and Ales Hampl and Alois Kozubík},
doi = {10.1093/toxsci/kfi009},
issn = {1096-6080 1096-0929},
year = {2005},
date = {2005-01-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {83},
number = {1},
pages = {53–63},
abstract = {Polychlorinated biphenyls (PCBs) exhibit tumor-promoting effects in experimental animals. We investigated effects of six model PCB congeners and hydroxylated PCB metabolites on proliferation of contact-inhibited rat liver epithelial WB-F344 cells. The 'dioxin-like' PCB congeners, PCB 126, PCB 105, and 4'-OH-PCB 79, a metabolite of the planar PCB 77 congener, induced cell proliferation in a concentration-dependent manner. In contrast, the 'non-dioxin-like' compounds that are not aryl hydrocarbon receptor (AhR) agonists, PCB 47, PCB 153, and 4-OH-PCB 187, an abundant noncoplanar PCB metabolite, had no effect on cell proliferation at concentrations up to 10 muM. The concentrations of dioxin-like PCBs leading to cell proliferation corresponded with the levels inducing the expression of cytochrome P450 1A1 mRNA, suggesting that the release from contact inhibition was associated with AhR activation. The effects of PCB 126 and PCB 153 on expression of proteins controlling G0/G1-S-phase transition and S-phase progression were compared. Only PCB 126 was found to upregulate cyclin A and D2 protein levels, and to increase both total cyclin-dependent kinase 2 (cdk2) and cyclin A/cdk2 complex activities. Despite the observed upregulation of cyclin D2, no increase in cdk4 activity was observed. The expression of cdk inhibitor p27Kip1 was not affected by either PCB 126 or PCB 153. These results suggest that dioxin-like PCBs can induce cell proliferation of contact-inhibited rat liver epithelial cells by increasing cyclin A protein levels, a process that then leads to upregulation of cyclin A/cdk2 activity and initiation of DNA replication. This mechanism could be involved in tumor-promoting effects of dioxin-like PCBs.},
note = {Place: United States},
keywords = {Animals, Aryl Hydrocarbon/*metabolism, Cell Line, Cell Proliferation/*drug effects, Cyclin A/biosynthesis, Cyclin D2, Cyclin-Dependent Kinases/biosynthesis, Cyclins/biosynthesis, Dose-Response Relationship, Drug, Epithelial Cells/*drug effects/enzymology/metabolism, Hydroxylation, Liver/*cytology, Polychlorinated Biphenyls/metabolism/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology/metabolism, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
2004
Chramostová, Katerina; Vondrácek, Jan; Sindlerová, Lenka; Vojtesek, Borivoj; Kozubík, Alois; Machala, Miroslav
Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells. Journal Article
In: Toxicology and applied pharmacology, vol. 196, no. 1, pp. 136–148, 2004, ISSN: 0041-008X, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Apoptosis/drug effects, Aryl Hydrocarbon/metabolism, Cell Division/drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/metabolism, Dose-Response Relationship, Drug, Epithelial Cells/*drug effects/enzymology/metabolism, Liver/*cytology, Mutagens/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology/metabolism, Tumor Suppressor Protein p53/biosynthesis
@article{chramostova_polycyclic_2004,
title = {Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells.},
author = {Katerina Chramostová and Jan Vondrácek and Lenka Sindlerová and Borivoj Vojtesek and Alois Kozubík and Miroslav Machala},
doi = {10.1016/j.taap.2003.12.008},
issn = {0041-008X},
year = {2004},
date = {2004-04-01},
journal = {Toxicology and applied pharmacology},
volume = {196},
number = {1},
pages = {136–148},
abstract = {Although many polycyclic aromatic hydrocarbons (PAHs) are recognized as potent mutagens and carcinogens, relatively little is known about their role in the tumor promotion. It is known that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can induce release of rat hepatic oval epithelial cells from contact inhibition by a mechanism possibly involving the aryl hydrocarbon receptor (AhR) activation. Many PAHs are AhR ligands and are known to act as transient inducers of AhR-mediated activity. In this study, effects of 19 selected PAHs on proliferation of confluent rat liver epithelial WB-F344 cells were investigated. Non-mutagens that are weak activators or nonactivators of AhR-mediated activity had no effect on cell proliferation. Relatively strong or moderate AhR ligands with low mutagenic potencies, such as benzofluoranthenes, benz[a]anthracene, and chrysene, were found to increase cell numbers, which corresponded to an increased percentage of cells entering S-phase. Strong mutagens, including benzo[a]pyrene and dibenzo[a,l]pyrene, increased a percentage of cells in S-phase without inducing a concomitant increase in cell numbers. The treatment with mutagenic PAHs was associated with an increased DNA synthesis and induction of cell death, which corresponded with the activation of p53 tumor suppressor. Apoptosis was blocked by pifithrin-alpha, the chemical inhibitor of p53. Both weakly and strongly mutagenic PAHs known as AhR ligands were found to induce significant increase of cytochrome P4501A activity, suggesting a presence of functional AhR. The results of the present study seem to suggest that a release from contact inhibition could be a part of tumor promoting effects of AhR-activating PAHs; however, the genotoxic effects of some PAHs associated with p53 activation might interfere with this process.},
note = {Place: United States},
keywords = {Animals, Apoptosis/drug effects, Aryl Hydrocarbon/metabolism, Cell Division/drug effects, Cells, Cultured, Cytochrome P-450 CYP1A1/metabolism, Dose-Response Relationship, Drug, Epithelial Cells/*drug effects/enzymology/metabolism, Liver/*cytology, Mutagens/*toxicity, Polycyclic Aromatic Hydrocarbons/*toxicity, Rats, Receptors, Stem Cells/*drug effects/enzymology/metabolism, Tumor Suppressor Protein p53/biosynthesis},
pubstate = {published},
tppubtype = {article}
}
Machala, Miroslav; Bláha, Ludek; Lehmler, Hans-Joachim; Plísková, Martina; Májková, Zuzana; Kapplová, Petra; Sovadinová, Iva; Vondrácek, Jan; Malmberg, Tina; Robertson, Larry W.
In: Chemical research in toxicology, vol. 17, no. 3, pp. 340–347, 2004, ISSN: 0893-228X, (Place: United States).
Abstract | Links | BibTeX | Tags: Adenocarcinoma/metabolism/pathology, Animals, Aryl Hydrocarbon/*biosynthesis, Breast Neoplasms/metabolism/pathology, Carcinoma, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Down-Regulation, Drug, Environmental Pollutants/*toxicity, Epithelial Cells/drug effects/metabolism, Estrogen/*biosynthesis, Gap Junctions/*drug effects/metabolism, Hepatocellular/metabolism/pathology, Humans, Hydroquinones, Hydroxylation, Liver Neoplasms/metabolism/pathology, Neoplasms/*metabolism/pathology, Polychlorinated Biphenyls/*toxicity, Quinones/*toxicity, Rats, Receptors, Tumor
@article{machala_toxicity_2004,
title = {Toxicity of hydroxylated and quinoid PCB metabolites: inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells.},
author = {Miroslav Machala and Ludek Bláha and Hans-Joachim Lehmler and Martina Plísková and Zuzana Májková and Petra Kapplová and Iva Sovadinová and Jan Vondrácek and Tina Malmberg and Larry W. Robertson},
doi = {10.1021/tx030034v},
issn = {0893-228X},
year = {2004},
date = {2004-03-01},
journal = {Chemical research in toxicology},
volume = {17},
number = {3},
pages = {340–347},
abstract = {In the present study, a series of 32 hydroxy- and dihydroxy-polychlorinated biphenyls (OH-PCBs) and PCB-derived quinones were prepared and evaluated for their in vitro potencies to downregulate gap junctional intercellular communication (GJIC) and to activate the aryl hydrocarbon receptor (AhR) and the estrogen receptor alpha (ER) in well-established liver and mammary cell models. The rat liver epithelial cell line WB-F344 was used for in vitro determination of GJIC inhibition; the AhR-inducing activity was determined in the rat hepatoma H4IIE.Luc cells stably transfected with a luciferase reporter gene; ER-mediated activity was measured in two breast carcinoma cell lines, MVLN and T47D.Luc, stably transfected with luciferase under the control of estrogen responsive element. Acute inhibition of GJIC, potentially associated with tumor promotion, was detected after treatment with all OH-PCBs under study, with the persistent OH-PCBs being the strongest ones. Several compounds were found to significantly induce the AhR-mediated activity, including 4'-OH-PCB 79, a metabolite of PCB 77, and 2-(4'-chloro)- and 2-(3',4'-dichloro)-1,4-benzoquinones and 1,4-hydroquinones. Low molecular weight OH-PCBs, such as 3'-hydroxy, 4'-, and 3',4'-dihydroxy-4-chlorobiphenyl, elicited significant estrogenic activity and potentiated effect of 17beta-estradiol. Antiestrogenic potencies, determined in the presence of 17beta-estradiol, were found for persistent 4-OH-PCB 187, 4-OH-PCB 146, and some low chlorinated PCB derivatives. However, no apparent association between induction of AhR activity and antiestrogenicity was observed. The majority of the OH-PCBs suppressed the 17beta-estradiol response only at cytotoxic concentrations. Spearman's rank correlations were calculated for these biological data and the physicochemical descriptors, hydrophobicity (log P), molar volume, pKa, log D, and dihedral angle. Significant correlations were found between potency to downregulate GJIC and log P and molar volume (R = -0.7, p < 0.0001). Antiestrogenic effects were also negatively correlated with hydrophobicity and molar volume. No significant correlations among other biological end points and the physicochemical descriptors were observed for the entire set of compounds. These results show that oxygenated PCB metabolites are capable of multiple adverse effects, including gap junction inhibition, AhR-mediated activity, and (anti)estrogenicity. The inhibition of GJIC by OH-PCBs represents a novel mode of action of both the lower chlorinated and the persisting high molecular weight OH-PCBs.},
note = {Place: United States},
keywords = {Adenocarcinoma/metabolism/pathology, Animals, Aryl Hydrocarbon/*biosynthesis, Breast Neoplasms/metabolism/pathology, Carcinoma, Cell Line, Cell Survival/drug effects, Dose-Response Relationship, Down-Regulation, Drug, Environmental Pollutants/*toxicity, Epithelial Cells/drug effects/metabolism, Estrogen/*biosynthesis, Gap Junctions/*drug effects/metabolism, Hepatocellular/metabolism/pathology, Humans, Hydroquinones, Hydroxylation, Liver Neoplasms/metabolism/pathology, Neoplasms/*metabolism/pathology, Polychlorinated Biphenyls/*toxicity, Quinones/*toxicity, Rats, Receptors, Tumor},
pubstate = {published},
tppubtype = {article}
}
2002
Bláha, Ludek; Kapplová, Petra; Vondrácek, Jan; Upham, Brad; Machala, Miroslav
Inhibition of gap-junctional intercellular communication by environmentally occurring polycyclic aromatic hydrocarbons. Journal Article
In: Toxicological sciences : an official journal of the Society of Toxicology, vol. 65, no. 1, pp. 43–51, 2002, ISSN: 1096-6080 1096-0929, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Carcinogens/toxicity, Cell Communication/*drug effects, Cell Line, Dose-Response Relationship, Drug, Environmental Pollutants/*toxicity, Epithelium/drug effects, Gap Junctions/*drug effects, Liver/cytology/drug effects, Molecular Structure, Polycyclic Aromatic Hydrocarbons/chemistry/*toxicity, Rats, Tetradecanoylphorbol Acetate/toxicity, United States, United States Environmental Protection Agency/standards
@article{blaha_inhibition_2002,
title = {Inhibition of gap-junctional intercellular communication by environmentally occurring polycyclic aromatic hydrocarbons.},
author = {Ludek Bláha and Petra Kapplová and Jan Vondrácek and Brad Upham and Miroslav Machala},
doi = {10.1093/toxsci/65.1.43},
issn = {1096-6080 1096-0929},
year = {2002},
date = {2002-01-01},
journal = {Toxicological sciences : an official journal of the Society of Toxicology},
volume = {65},
number = {1},
pages = {43–51},
abstract = {Polycyclic aromatic hydrocarbons (PAHs) are a broad class of ubiquitous environmental pollutants with known or suspected carcinogenic properties. Tumor promotion is a cell-proliferative step of cancer that requires the removal of cells from growth suppression via the inhibition of gap-junctional intercellular communication (GJIC). Inhibition of GJIC measured with an in vitro WB-F344 rat liver epithelial cell system was used to assess the relative potencies of 13 PAHs suggested by the U.S. Environmental Protection Agency (EPA) as the principal contaminants and 22 other PAHs, most of them identified in environmental samples. Maximal inhibition of GJIC was detected after 30 min of exposure, followed by a recovery in intercellular communication after an additional 30 min of exposure, suggesting a transient character of inhibition. Although microM concentrations of PAHs were required to reach the inhibition level equal to the model tumor promoter phorbol 12-myristate 13-acetate (IC50 = 8 nM), 12 of the PAHs under study were found to be strong inhibitors of GJIC (strongest effects were observed with fluoranthene, picene, 5-methylchrysene and nine additional PAHs). The other nine PAHs, including benzo[a]pyrene, inhibited GJIC only up to 50-75% of the control level. Interestingly, several high molecular weight PAHs with known strong carcinogenic properties possessed only weak (dibenzopyrenes) or no inhibition potency (dibenzofluoranthenes, naphtho[2,3-a]pyrene and benzo[a]perylene). Based on the IC50 values related to the reference PAH benzo[a]pyrene, we suggested arbitrary values of inhibition equivalency factors (GJIC-IEFs) ranging from 0 (noninhibiting PAHs) to 10.0 (strongest inhibitors), suitable for the purposes of environmental risk assessment.},
note = {Place: United States},
keywords = {Animals, Carcinogens/toxicity, Cell Communication/*drug effects, Cell Line, Dose-Response Relationship, Drug, Environmental Pollutants/*toxicity, Epithelium/drug effects, Gap Junctions/*drug effects, Liver/cytology/drug effects, Molecular Structure, Polycyclic Aromatic Hydrocarbons/chemistry/*toxicity, Rats, Tetradecanoylphorbol Acetate/toxicity, United States, United States Environmental Protection Agency/standards},
pubstate = {published},
tppubtype = {article}
}