2014
Jiřík, Radovan; Souček, Karel; Mézl, Martin; Bartoš, Michal; Dražanová, Eva; Dráfi, František; Grossová, Lucie; Kratochvíla, Jiří; Macíček, Ondřej; Nylund, Kim; Hampl, Aleš; Gilja, Odd Helge; Taxt, Torfinn; Starčuk, Zenon Jr
Blind deconvolution in dynamic contrast-enhanced MRI and ultrasound. Journal Article
In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol. 2014, pp. 4276–4279, 2014, ISSN: 2694-0604 2375-7477, (Place: United States).
Abstract | Links | BibTeX | Tags: Animals, Cell Line, Contrast Media/*pharmacokinetics, Experimental/diagnostic imaging/metabolism, Gadolinium DTPA/*pharmacokinetics, Humans, Inbred BALB C, Magnetic Resonance Imaging/methods, Mice, Neoplasm Transplantation, Neoplasms, Tissue Distribution, Tumor, Ultrasonography
@article{jirik_blind_2014,
title = {Blind deconvolution in dynamic contrast-enhanced MRI and ultrasound.},
author = {Radovan Jiřík and Karel Souček and Martin Mézl and Michal Bartoš and Eva Dražanová and František Dráfi and Lucie Grossová and Jiří Kratochvíla and Ondřej Macíček and Kim Nylund and Aleš Hampl and Odd Helge Gilja and Torfinn Taxt and Zenon Jr Starčuk},
doi = {10.1109/EMBC.2014.6944569},
issn = {2694-0604 2375-7477},
year = {2014},
date = {2014-01-01},
journal = {Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference},
volume = {2014},
pages = {4276–4279},
abstract = {This paper is focused on quantitative perfusion analysis using MRI and ultrasound. In both MRI and ultrasound, most approaches allow estimation of rate constants (Ktrans, kep for MRI) and indices (AUC, TTP) that are only related to the physiological perfusion parameters of a tissue (e.g. blood flow, vessel permeability) but do not allow their absolute quantification. Recent methods for quantification of these physiological perfusion parameters are shortly reviewed. The main problem of these methods is estimation of the arterial input function (AIF). This paper summarizes and extends the current blind-deconvolution approaches to AIF estimation. The feasibility of these methods is shown on a small preclinical study using both MRI and ultrasound.},
note = {Place: United States},
keywords = {Animals, Cell Line, Contrast Media/*pharmacokinetics, Experimental/diagnostic imaging/metabolism, Gadolinium DTPA/*pharmacokinetics, Humans, Inbred BALB C, Magnetic Resonance Imaging/methods, Mice, Neoplasm Transplantation, Neoplasms, Tissue Distribution, Tumor, Ultrasonography},
pubstate = {published},
tppubtype = {article}
}
2010
Soucek, Karel; Gajdusková, Pavla; Brázdová, Marie; Hýzd'alová, Martina; Kocí, Lenka; Vydra, David; Trojanec, Radek; Pernicová, Zuzana; Lentvorská, Lenka; Hajdúch, Marián; Hofmanová, Jirina; Kozubík, Alois
Fetal colon cell line FHC exhibits tumorigenic phenotype, complex karyotype, and TP53 gene mutation. Journal Article
In: Cancer genetics and cytogenetics, vol. 197, no. 2, pp. 107–116, 2010, ISSN: 1873-4456 0165-4608, (Place: United States).
Abstract | Links | BibTeX | Tags: *Genes, Animals, Apoptosis/physiology, Carcinoembryonic Antigen/metabolism, Cell Adhesion/physiology, Cell Growth Processes/physiology, Cell Line, Cell Transformation, Colon/cytology/metabolism/*physiology, Colonic Neoplasms/*genetics/*pathology, Comparative Genomic Hybridization, Cytogenetic Analysis/methods, DNA Damage, DNA Mutational Analysis/methods, Female, Fetus/cytology, Fluorescence, HCT116 Cells, Humans, In Situ Hybridization, Karyotyping, Keratins/metabolism, Mice, Neoplasm Transplantation, Neoplastic/genetics/pathology, p53, Phenotype, Proto-Oncogene Mas, SCID, Signal Transduction, Transformed
@article{soucek_fetal_2010,
title = {Fetal colon cell line FHC exhibits tumorigenic phenotype, complex karyotype, and TP53 gene mutation.},
author = {Karel Soucek and Pavla Gajdusková and Marie Brázdová and Martina Hýzd'alová and Lenka Kocí and David Vydra and Radek Trojanec and Zuzana Pernicová and Lenka Lentvorská and Marián Hajdúch and Jirina Hofmanová and Alois Kozubík},
doi = {10.1016/j.cancergencyto.2009.11.009},
issn = {1873-4456 0165-4608},
year = {2010},
date = {2010-03-01},
journal = {Cancer genetics and cytogenetics},
volume = {197},
number = {2},
pages = {107–116},
abstract = {Stable cell lines obtained by spontaneous immortalization might represent early stages of malignant transformation and be useful experimental models for studies of mechanisms of cancer development. The FHC (fetal human cells) cell line has been established from normal fetal colonic mucosa. Detailed characterization of this cell line and mechanism of spontaneously acquired immortality have not been described yet. Therefore, we characterized the FHC cell line in terms of its tumorigenicity, cytogenetics, and TP53 gene mutation analysis. FHC cells displayed capability for anchorage-independent growth in semisolid media in vitro and formed solid tumors after transplantation into SCID (severe combined immunodeficiency) mice. This tumorigenic phenotype was associated with hypotriploidy and chromosome number ranging from 66 to 69. Results of comparative genetic hybridization arrays showed that most chromosomes included regions of copy number gains or losses. Region 8q23 approximately 8q24.3 (containing, e.g., MYC proto-oncogene) was present in more than 20 copies per nucleus. Moreover, we identified mutation of TP53 gene in codon 273; triplet CGT coding Arg was changed to CAG coding His. Expression of Pro codon 72 polymorphic variant of p53 was also detected. Mutation of TP53 gene was associated with abolished induction of p21(Waf1/Cip1) and MDM-2 proteins and resistance to apoptosis after genotoxic treatment. Because of their origin from normal fetal colon and their relative resistance to the induction of apoptosis, FHC cells can be considered a valuable experimental model for various studies.},
note = {Place: United States},
keywords = {*Genes, Animals, Apoptosis/physiology, Carcinoembryonic Antigen/metabolism, Cell Adhesion/physiology, Cell Growth Processes/physiology, Cell Line, Cell Transformation, Colon/cytology/metabolism/*physiology, Colonic Neoplasms/*genetics/*pathology, Comparative Genomic Hybridization, Cytogenetic Analysis/methods, DNA Damage, DNA Mutational Analysis/methods, Female, Fetus/cytology, Fluorescence, HCT116 Cells, Humans, In Situ Hybridization, Karyotyping, Keratins/metabolism, Mice, Neoplasm Transplantation, Neoplastic/genetics/pathology, p53, Phenotype, Proto-Oncogene Mas, SCID, Signal Transduction, Transformed},
pubstate = {published},
tppubtype = {article}
}